• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yanlin, Lu Guoyan, Xiang Yutao, Yang Bin, Li Zongbo. Type, distribution and quantitative characteristics of sensory organs on the larval head of Tomicus brevipilosus (Coleoptera: Curculionidae: Scolytinae)[J]. Journal of Beijing Forestry University, 2024, 46(4): 63-73. DOI: 10.12171/j.1000-1522.20230105
Citation: Zhang Yanlin, Lu Guoyan, Xiang Yutao, Yang Bin, Li Zongbo. Type, distribution and quantitative characteristics of sensory organs on the larval head of Tomicus brevipilosus (Coleoptera: Curculionidae: Scolytinae)[J]. Journal of Beijing Forestry University, 2024, 46(4): 63-73. DOI: 10.12171/j.1000-1522.20230105

Type, distribution and quantitative characteristics of sensory organs on the larval head of Tomicus brevipilosus (Coleoptera: Curculionidae: Scolytinae)

More Information
  • Received Date: May 06, 2023
  • Revised Date: December 18, 2023
  • Accepted Date: December 20, 2023
  • Available Online: December 24, 2023
  • Objective 

    To provide a scientific basis for further exploration of foraging and moving about the larval behaviors of Tomicus bravipilosus (Coleoptera: Curculionidae: Scolytinae), we investigated the morphological adaptation and function of the sensilla on the larval head of this bark beetle.

    Method 

    We examined and compared the types, distribution, and abundance of sensory organs on the head of the first, second, and third instar larvae using scanning electron microscopy (SEM).

    Result 

    The head shape of the larvae was hypognathous. Its head appendages contained a pair of antennae, stemmata, mandible, maxilla, maxillary palp, labial palp, as well as a single labrum and labium. Totally, there were 15 types of identified sensilla. The reduced antennae with one segment had five types of antennal sensilla, identified as sensilla basiconica type Ⅰ and sensilla twig basiconica type Ⅰ−Ⅳ. The biting mouthparts were involved in 12 types, including sensilla chaetica type Ⅰ−Ⅴ, sensilla trichodea type Ⅰ−Ⅱ, sensilla basiconica type Ⅱ, sensilla digitiformina, and sensilla twig basiconica type Ⅱ, Ⅳ, and Ⅴ. Sensilla trichodea and sensilla chaetica having smooth and nonporous surface were widespread and classified as mechanoreceptors. Sensilla basiconica and sensilla twig basiconica having the surface pores distributed exclusively on the apex of the antennae, maxillary palp and labial palp, and were classical chemoreceptors. Sensilla digitiformia having only one unit on the second segment of every maxillary palp were considered as the acoustic sensor for the mechanical vibrations. With an increase of larval instar, each sensilla types, abundance, and distribution on the head appendages kept consistent with the different instar larvae. However, sensilla sizes showed exponential growth compared with the last instar larvae.

    Conclusion 

    This research clarifies the head structures and sensilla types, distribution, abundance, and instar changes of the sensilla on the larval head of T. brevipilosus. Chemical sensors are concentrated at the tips of the antennae, mandibular palps, and labial palps, which is a distribution pattern that aids the larvae in feeding and moving within the bark-cavities. The study has conducted a detailed exploration of the functions of the chemical sensors, which will provide a scientific basis for the next step of studying the information perception of T. brevipilosus larvae within its galleries. It is expected to take a shred of scientific evidence for further behavioral drivers of chemical sensation in the gallery of T. brevipilosus larvae.

  • [1]
    彩万志, 庞雄飞, 花保祯, 等. 普通昆虫学[M]. 2版. 北京: 中国农业大学出版社, 2011: 233−235.

    Cai W Z, Pang X F, Hua B Z, et al. General entomology [M]. 2nd ed. Beijing: China Agriculture University Press, 2011: 233−235.
    [2]
    Sobral M. All traits are functional: an evolutionary viewpoint[J]. Trends in Plant Science, 2021, 26(7): 674−676. doi: 10.1016/j.tplants.2021.04.004
    [3]
    Alekseev M A, Sinitsina E E, Chaika S Y. Sensory organs of the antennae and mouthparts of beetle larvae (Coleoptera)[J]. Entomological Review, 2006, 86(6): 638−648. doi: 10.1134/S0013873806060042
    [4]
    Glendinning J I. Insect gustatory systems[M]. New York: Academic Press, 2008: 75−95.
    [5]
    Crespo J G. A review of chemosensation and related behavior in aquatic insects[J]. Journal of Insect Science, 2011, 11(1): 62.
    [6]
    Hofstetter R W, Aflitto N, Bedoya C L, et al. Vibrational behavior in bark beetles: applied aspects[M]. Cham: Springer International Publishing, 2019: 415−435.
    [7]
    Makarova A A, Diakova A A, Chaika S Y, et al. Scaling of the sense organs of insects(2): sensilla, discussion, conclusion[J]. Entomological Review, 2022, 102(3): 323−346. doi: 10.1134/S0013873822030058
    [8]
    戈峰. 害虫管理: 从“综合”到“整合”[J]. 应用昆虫学报, 2020, 57(1): 1−9.

    Ge F. From comprehensive to integrated pest management[J]. Chinese Journal of Applied Entomology, 2020, 57(1): 1−9.
    [9]
    Lieutier F, Långström B, Faccolim M. The genus Tomicus[M]. San Diego: Academic Press, 2015: 371−426.
    [10]
    武承旭, 臧丽鹏, 张苏芳, 等. 云南松三种同域共存切梢小蠹梢转干期的空间分布格局[J]. 生态学报, 2020, 40(11): 3646−3655.

    Wu C X, Zang L P, Zhang S F, et al. Spatial distribution patterns of three sympatric Tomicus species initially infesting Pinus yunnanensis trunks[J]. Acta Ecologica Sinica, 2020, 40(11): 3646−3655.
    [11]
    Liu F, Wu C, Zhang S, et al. Initial location preference together with aggregation pheromones regulate the attack pattern of Tomicus brevipilosus (Coleoptera: Curculionidae) on Pinus kesiya[J]. Forests, 2019, 10(2): 156. doi: 10.3390/f10020156
    [12]
    Borden J H, Birmingham A L, Burleigh J S. Evaluation of the push-pull tactic against the mountain pine beetle using verbenone and non-host volatiles in combination with pheromone-baited trees[J]. The Forestry Chronicle, 2006, 82(4): 579−590. doi: 10.5558/tfc82579-4
    [13]
    季梅, 董谢琼, 刘宏屏, 等. 云南松林纵坑切梢小蠹灾害遥感监测的初步研究[J]. 西部林业科学, 2007, 36(1): 87−90. doi: 10.3969/j.issn.1672-8246.2007.01.018

    Ji M, Dong X Q, Liu H P, et al. Preliminary study on remote forest damaged sensing detection of Yunnan pine by Tomicus piniperda[J]. Journal of West China Forestry Science, 2007, 36(1): 87−90. doi: 10.3969/j.issn.1672-8246.2007.01.018
    [14]
    Polajnar J, Eriksson A, Lucchi A, et al. Manipulating behaviour with substrate-borne vibrations:potential for insect pest control[J]. Pest Management Science, 2015, 71(1): 15−23. doi: 10.1002/ps.3848
    [15]
    He J, Yan Z G, Jiang Z S. Effects of five new compounds on the larval growth and digestive physiology of the Asiatic corn borer, Ostrinia furnacalis larvae[J]. Insect Science, 2003, 10(3): 173−177. doi: 10.1111/j.1744-7917.2003.tb00381.x
    [16]
    张梦蝶, 钱路兵, 泽桑梓, 等. 云南切梢小蠹幼虫表皮碳氢化合物与龄数的相关性[J]. 林业科学, 2021, 57(5): 151−159.

    Zhang M D, Qian L B, Ze S Z, et al. Correlation between cuticular hydrocarbons and instar numbers of the larvae of Yunnan shoot borer, Tomicus yunnanensis (Coleoptera: Scolytidae)[J]. Scientia Silvae Sinicae, 2021, 57(5): 151−159.
    [17]
    Zacharuk R Y. Antennae and sensilla[M]. Oxford:Pergamon, 1985.
    [18]
    Yang Y, Ren L, Xu L, et al. Comparative morphology of sensilla on the antennae, maxillary and labial palps in different larval instars of Cryptorrhynchus lapathi (Linnaeus) (Coleoptera: Curculionidae)[J]. Zoologischer Anzeiger, 2019, 283: 93−101. doi: 10.1016/j.jcz.2019.09.003
    [19]
    Shi X, Shen J C, Zhang S F, et al. Comparative analysis of the type and number of larval sensilla on the antennae and mouthparts of Ips typographus and Ips subelongatus using SEM[J]. Zoologischer Anzeiger, 2020, 289: 18−25. doi: 10.1016/j.jcz.2020.08.007
    [20]
    徐丽丽. 沟胫天牛亚科七种天牛不同虫态触角、下颚须和下唇须的感器研究 [D]. 北京: 北京林业大学, 2016.

    Xu L L. Sensilla on antenna, maxillary palp and labial palps of seven Lamiinae longhorned beetle species at different life stages[D]. Beijing: Beijing Forestry University, 2016.
    [21]
    Speirs R D, White G D, Wilson J L. SEM observations of rice weevil larvae, Sitophilus oryzae (L.) (Coleoptera: Curculionidae)[J]. Journal of the Kansas Entomological Society, 1986, 59(2): 390−394.
    [22]
    Xu L, Zhang L, Yang Y, et al. Morphology of antennal, maxillary palp and labial palp sensilla in different larval instars of the Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae)[J]. Acta Zoologica, 2017, 98(1): 20−31. doi: 10.1111/azo.12146
    [23]
    Ryan M F, Behan M. The sensory receptors of Tribolium larvae[J]. Physiological Zoology, 1973, 46(3): 238−244. doi: 10.1086/physzool.46.3.30155605
    [24]
    Giglio A, Ferrero E A, Perrotta E, et al. Ultrastructure and comparative morphology of mouth-part sensilla in ground beetle larvae (Insecta, Coleoptera, Carabidae)[J]. Zoologischer Anzeiger, 2003, 242(3): 277−292. doi: 10.1078/0044-5231-00104
    [25]
    韩潇, 段彦丽, 李秀芬, 等. 花绒寄甲1龄幼虫触角及口器感器的超微结构[J]. 林业科学研究, 2021, 34(2): 180−184. doi: 10.13275/j.cnki.lykxyj.2021.02.020

    Han X, Duan Y L, Li X F, et al. Sensilla ultrastructure of antennae and mouthparts of the first instar larvae of Dastarcus helophoroides (Coleoptera: Bothrideridae)[J]. Forest Research, 2021, 34(2): 180−184. doi: 10.13275/j.cnki.lykxyj.2021.02.020
    [26]
    Eilers E J, Talarico G, Hansson B S, et al. Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae[J]. PLoS One, 2012, 7(7): e41357. doi: 10.1371/journal.pone.0041357
    [27]
    Mckenna D D, Shin S, Aheens D, et al. The evolution and genomic basis of beetle diversity[J]. Proceedings of the National Academy of Sciences, 2019, 116(49): 24729−24737. doi: 10.1073/pnas.1909655116
    [28]
    Keil T A. Functional morphology of insect mechanoreceptors[J]. Microscopy Research and Technique, 1997, 39(6): 506−531. doi: 10.1002/(SICI)1097-0029(19971215)39:6<506::AID-JEMT5>3.0.CO;2-B
    [29]
    Isidoro N, Romani R, Bin F. Antennal multiporous sensilla: Their gustatory features for host recognition in female parasitic wasps (Insecta, Hymenoptera: Platygastroidea)[J]. Microscopy Research and Technique, 2001, 55(5): 350−358. doi: 10.1002/jemt.1183
    [30]
    Beutel R G, Yavorskaya M. Structure and evolution of mouthparts in Coleoptera[M]. Cham: Springer International Publishing, 2019: 387−418.
    [31]
    Basibuyuk H H, Quicke D L J. Gross morphology of multiporous plate sensilla in the Hymenoptera (Insecta)[J]. Zoologica Scripta, 1999, 28(1−2): 51−67. doi: 10.1046/j.1463-6409.1999.00007.x
    [32]
    Keil T A. Sensilla on the maxillary palps of Helicoverpa armigera caterpillars: in search of the CO2-receptor[J]. Tissue and Cell, 1996, 28(6): 703−717. doi: 10.1016/S0040-8166(96)80073-5
    [33]
    Zacharuk R Y, Albert P J, Bellamy F W. Ultrastructure and function of digitiform sensilla on the labial palp of a larval elaterid (Coleoptera)[J]. Canadian Journal of Zoology, 1977, 55(3): 569−578. doi: 10.1139/z77-072
    [34]
    Broad G R, Quicke D L J. The adaptive significance of host location by vibrational sounding in parasitoid wasps[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2000, 267: 2403−2409. doi: 10.1098/rspb.2000.1298
  • Related Articles

    [1]Chen Jun, Sun Yuan, Liu Chenxi, Yao Ruihan, Yu Jiahui, Cao Fuliang, Yu Pengfei. Volume modeling and yield for Liriodendron tulipifera based on terrestrial laser scan data[J]. Journal of Beijing Forestry University, 2023, 45(6): 33-42. DOI: 10.12171/j.1000-1522.20210296
    [2]Zhuang Yutong, Yang Yunzhao, Chen Ruting, Luo Yuxin, Chi Defu. Scanning electron microscope observation on the structure and sensilla of the mouthparts of two species of Dioryctria larvae (Lepidoptera: Pyralidae)[J]. Journal of Beijing Forestry University, 2022, 44(8): 77-87. DOI: 10.12171/j.1000-1522.20210269
    [3]Hu Ping, Yang Xiuhao, Yang Zhende. Morphology and distribution of sensillum on antennal, thoracic and abdominal tegument of Endoclita signifier larva[J]. Journal of Beijing Forestry University, 2021, 43(9): 111-120. DOI: 10.12171/j.1000-1522.20210145
    [4]Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. DOI: 10.12171/j.1000-1522.20200317
    [5]Lu Junjia, Xu Rong, Li Yonghe. SEM and TEM observations of Clonostachys rosea SWFUYHL 02-03 infecting the body wall of Cephalcia chuxiongica larvae[J]. Journal of Beijing Forestry University, 2018, 40(12): 68-75. DOI: 10.13332/j.1000-1522.20180230
    [6]WANG Dan-qing, HE Jing, ZHANG Qiu-hui. Effects of fumigation treatment on wood color and mechanical strength of Larix gmelinii[J]. Journal of Beijing Forestry University, 2017, 39(2): 100-107. DOI: 10.13332/j.1000-1522.20160317
    [7]CAO Qing-jie, CHI De-fu, YU Jia, RAN Ya-li. SEM and TEM observations of Beauveria brongniartii(Sacc.)Petch infecting body wall of Cryptorhynchus lapathi L. (Coleoptera: Curculionidae) larvae.[J]. Journal of Beijing Forestry University, 2015, 37(5): 96-101. DOI: 10.13332/j.1000-1522.20140483
    [8]LI Yan, MENG Qing-fan, ZONG Xiang, GAO Wen-tao. Ultrastructural observations on antennal sensilla of Massicus raddei Blessig ( Coleoptera: Cerambycidae ).[J]. Journal of Beijing Forestry University, 2013, 35(6): 80-86.
    [9]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [10]CHENG Jin-xin, SUN Yu-han, HU Jun-yan, WANG Ya-ru, DING Bo-yuan, LI Yun. Identifying the ploidy of ginkgo pollen using laser scanning confocal and scanning electron microscope.[J]. Journal of Beijing Forestry University, 2012, 34(4): 31-34.
  • Cited by

    Periodical cited type(6)

    1. 韩平安,孙瑞芬,唐宽刚,常悦,王良,金晓蕾,梁亚晖,李晓东,吴新荣. 甜菜SBPase基因的遗传转化. 中国糖料. 2022(03): 8-13 .
    2. 韩平安,孙瑞芬,唐宽刚,常悦,梁亚晖,聂利珍,吴新荣,李晓东. SBPase基因超表达对烟草生长的影响. 北方农业学报. 2021(04): 62-69 .
    3. 徐煲铧,刘瑞彬,余绍东,张应中. 茶树SBPase基因的电子克隆与生物信息学分析. 现代农业科技. 2019(07): 17-19 .
    4. 梁英辉,穆丹,缪天琳,李秀霞,李春丰,姜成. 寒地鼠耳芥室内栽培技术. 种子. 2019(06): 147-150 .
    5. 王锐洁,关萍,刘筱,杨淑君,姬拉拉,邓小红,王健健. 遮阴与施磷对金荞麦生长及荧光参数的影响. 生物技术通报. 2019(06): 32-38 .
    6. 王丽云,刘小金,徐大平,陈传松,聂国树,向斌. 林木营养生长和生殖生长调控技术研究进展. 世界林业研究. 2019(06): 6-12 .

    Other cited types(4)

Catalog

    Article views (379) PDF downloads (70) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return