• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tao Xin, Tian Dongxue, Liang Shanqing, Li Shanming, Peng Limin, Fu Feng. Painting properties and lightfastness of microwave puffed wood-based metal composites[J]. Journal of Beijing Forestry University, 2023, 45(10): 140-148. DOI: 10.12171/j.1000-1522.20230190
Citation: Tao Xin, Tian Dongxue, Liang Shanqing, Li Shanming, Peng Limin, Fu Feng. Painting properties and lightfastness of microwave puffed wood-based metal composites[J]. Journal of Beijing Forestry University, 2023, 45(10): 140-148. DOI: 10.12171/j.1000-1522.20230190

Painting properties and lightfastness of microwave puffed wood-based metal composites

More Information
  • Received Date: July 30, 2023
  • Revised Date: September 12, 2023
  • Accepted Date: September 12, 2023
  • Available Online: September 15, 2023
  • Objective 

    Puffed wood-based metal composite (PWMC) is decorative metallic wood material with a high thermal conductivity and moderate density. To provide technical reference for its future high value-added applications in the fields of interior decoration and household wooden products, the research on painting properties and lightfastness of PWMC had been carried out in this paper.

    Method 

    Waterborne polyurethane paints were coated on PWMC surface. We studied the effect of painting number on the colorimetric parameters and gloss. The relationship between sandpaper grit and film adhesion was investigated by comprehensively analyzing the surface roughness parameters. Meanwhile, the surface color changes and gloss loss rate were characterized after 720 h artificially accelerated UV ageing treatment. The photodegradation mechanism was also analyzed by comparing the surface chemical structures.

    Result 

    Clear varnish finishes play a dual role of protection and decoration for PWMC. After the three-primers and two-topcoats painting treatment, the total color difference values of PWMC, wood area, and metal area were 10.26, 9.07 and 3.22, respectively. It indicated that the color variation of the wood area was larger than that of the metal area. The gloss value difference between wood and metal areas decreased from 17.7 to 2.3 after painting, representing that the painting treatment resulted in a more uniform surface gloss. The roughness parameters of PWMC wood and metal areas were similar when sandpaper grit was 240. It maintained a flat and homogeneous surface, thus PWMC had a best paint film adhesion (level 0). Under artificially accelerated UV ageing of 720 h, PWMC wood area changed to greenish-yellow, and the lightness of wood and metal areas increased. The colorimetric parameter changes and light loss rate of wood and metal areas were reduced after painting. It confirmed that the enhancement of waterborne polyurethane paints on the lightfastness of PWMC. Infrared spectroscopy and X-ray photoelectron spectroscopy showed an increase in the oxidation state of carbon atoms, indicating oxidative degradation happened in PWMC wood area and coating paints under light irradiation.

    Conclusion 

    The painting properties and lightfastness are investigated, providing a theoretical and technical basis for the value-added utilization of PWMC.

  • [1]
    王振宇, 林兰英, 傅峰, 等. 木材高强微波处理及其结构失效机制研究进展[J]. 林业工程学报, 2022, 7(4): 13−21.

    Wang Z Y, Lin L Y, Fu F, et al. Research progress on high-intensity microwave treatment and failure mechanism of wood[J]. Journal of Forestry Engineering, 2022, 7(4): 13−21.
    [2]
    Zhang Y, Lin L Y, Fu F. High-permeability wood with microwave remodeling structure[J]. Forests, 2021, 12: 1432. doi: 10.3390/f12111432
    [3]
    Chai Y, Liang S Q, Zhou Y D, et al. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood–metal functional composites[J]. Wood Science and Technology, 2020, 54: 637−649. doi: 10.1007/s00226-020-01174-5
    [4]
    柴媛, 陶鑫, 梁善庆, 等. 填缝型微波膨化木基金属复合材料制备及其性能表征[J]. 北京林业大学学报, 2021, 43(10): 118−125.

    Chai Y, Tao X, Liang S Q, et al. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118−125.
    [5]
    刘一星, 于海鹏. 透明涂饰对木材纹理等视觉特征的影响分析[J]. 林业科学, 2006, 42(12): 90−94.

    Liu Y X, Yu H P. Effect of clear lacquer on textural vision of wood surface[J]. Scientia Silvae Sinicae, 2006, 42(12): 90−94.
    [6]
    侯新毅, 姜笑梅, 殷亚方. 从色度学参数研究3种桉树木材的透明涂饰性能[J]. 林业科学, 2006, 42(8): 57−62.

    Hou X Y, Jiang X M, Yin Y F. Study on clear painting properties for three eucalyptus plantation woods from the chromatic parameters[J]. Scientia Silvae Sinicae, 2006, 42(8): 57−62.
    [7]
    皇权飞, 黄艳辉, 张唯, 等. 基于水曲柳基材的水性漆漆膜性能研究[J]. 北京林业大学学报, 2020, 42(7): 140−146.

    Huang Q F, Huang Y H, Zhang W, et al. Film properties of waterborne paint based on Fraxinus mandshurica substrate[J]. Journal of Beijing Forestry University, 2020, 42(7): 140−146.
    [8]
    Tao X, Tian D X, Liang S Q, et al. Facile strategy for preparing puffed wood-based metal composites with low density and enhanced thermal conduction via high-intensity microwave puffing pretreatment[J]. Industrial Crops and Products, 2023, 194: 116388. doi: 10.1016/j.indcrop.2023.116388
    [9]
    孙丹, 李鸽. GB/T3505—2009《产品几何技术规范(GPS) 表面结构 轮廓法 术语、定义及表面结构参数》标准介绍[J]. 机械工业标准化与质量, 2010, 443(4): 17−24.

    Sun D, Li G. Standard introduction of GB/T3505−2009 geometrical product specification (GPS)-surface texture: profile method-terms, definitions, and surface texture parameters[J]. Machinery Industry Standardization & Quality, 2010, 443(4): 17−24.
    [10]
    Han J J, Wei Z, Wang G. Investigation of influence factors on surface roughness of micro-scale features[J]. Precision Engineering, 2019, 56: 524−529. doi: 10.1016/j.precisioneng.2019.02.010
    [11]
    林兰英, 何盛, 傅峰, 等. 基于图像处理的微波处理材裂纹评价[J]. 林业科学, 2014, 50(4): 84−89.

    Lin L Y, He S, Fu F, et al. Evaluation of the cracks in microwave-treated lumbers based on image processing[J]. Scientia Silvae Sinicae, 2014, 50(4): 84−89.
    [12]
    刘梓灵, 涂登云, 周桥芳, 等. 压缩工艺和热处理对单侧表层压缩木涂饰性能的影响[J]. 木材科学与技术, 2022, 36(6): 75−81.

    Liu Z L, Tu D Y, Zhou Q F, et al. Effect of compression process and heat treatment on coating performance of unilaterally surface-densified wood[J]. Chinese Journal of Wood Science and Technology, 2022, 36(6): 75−81.
    [13]
    Sulaiman O, Hashim R, Subari K, et al. Effect of sanding on surface roughness of rubberwood[J]. Journal of Materials Processing Technology, 2009, 209(8): 3949−3955. doi: 10.1016/j.jmatprotec.2008.09.009
    [14]
    张梦莹, 吕建雄, 李萍, 等. 硅酸盐改性杨木表面粗糙度对漆膜附着性能的影响[J]. 林业工程学报, 2022, 7(6): 196−201.

    Zhang M Y, Lü J X, Li P, et al. Influences of surface roughness on the paint film adhesion properties of silicate-modified poplar[J]. Journal of Forestry Engineering, 2022, 7(6): 196−201.
    [15]
    Tayeh B A, Bakar B A, Johari M M, et al. The relationship between substrate roughness parameters and bond strength of ultra high-performance fiber concrete[J]. Journal of Adhesion Science and Technology, 2013, 27(16): 1790−1810. doi: 10.1080/01694243.2012.761543
    [16]
    刘晓玲, 陈松武, 冯沁雄, 等. 桉木透明涂饰漆膜耐光性的研究[J]. 西北林学院学报, 2020, 35(2): 223−228.

    Liu X L, Chen S W, Feng Q X, et al. Light fastness of clear painted varnish film on encalyptus wood[J]. Journal of Northwest Forestry University, 2020, 35(2): 223−228.
    [17]
    Müller U, Rätzsch M, Schwanninger M, et al. Yellowing and IR-changes of spruce wood as result of UV-irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2003, 69(2): 97−105.
    [18]
    王小青, 任海青, 赵荣军, 等. 毛竹材表面光化降解的FTIR和XPS分析[J]. 光谱学与光谱分析, 2009, 29(7): 1864−1867.

    Wang X Q, Ren H Q, Zhao R J, et al. FTIR and XPS spectroscopic studies of photodegradation of moso bamboo ( Phyllostachys pubescens Mazel)[J]. Spectroscopy and Spectral Analysis, 2009, 29(7): 1864−1867.
    [19]
    Wang X Q, Ren H Q. Comparative study of the photo-discoloration of moso bamboo ( Phyllostachys pubescens Mazel) and two wood species[J]. Applied Surface Science, 2008, 254(21): 7029−7034. doi: 10.1016/j.apsusc.2008.05.121
    [20]
    Liu J, Li Z, Zhang L W, et al. Degradation behavior and mechanism of polyurethane coating for aerospace application under atmospheric conditions in South China Sea[J]. Progress in Organic Coatings, 2019, 136: 105310. doi: 10.1016/j.porgcoat.2019.105310
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (349) PDF downloads (38) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return