• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Yang, Peng Zuodeng, Liu Weitao, Wang Xinzhe, Wang Shuting, Wang Shaoming. Research and development of density management map for multifunctional management of Robinia pseudoacacia plantations with different generations of management[J]. Journal of Beijing Forestry University, 2024, 46(10): 11-21. DOI: 10.12171/j.1000-1522.20230213
Citation: Yang Yang, Peng Zuodeng, Liu Weitao, Wang Xinzhe, Wang Shuting, Wang Shaoming. Research and development of density management map for multifunctional management of Robinia pseudoacacia plantations with different generations of management[J]. Journal of Beijing Forestry University, 2024, 46(10): 11-21. DOI: 10.12171/j.1000-1522.20230213

Research and development of density management map for multifunctional management of Robinia pseudoacacia plantations with different generations of management

More Information
  • Received Date: August 31, 2023
  • Revised Date: January 25, 2024
  • Accepted Date: May 15, 2024
  • Available Online: May 26, 2024
  • Objective 

    This study established a multifunctional forest density management map for Robinia pseudoacacia plantations to achieve scientific and rational management of R. pseudoacacia forests with different cultivation purposes, and provide scientific basis for yield prediction and tending management plan formulation in forest management processes.

    Method 

    The fixed and temporary sample plots of R. pseudoacacia plantations, which located in the State-Owned Lü Village Forest Farm in Luoning County, Henan Province of northern China were set up for different management generations of R. pseudoacacia. Each tree was measured, with indexes including DBH, tree height and the number of trees, and the maximum soil water capacity of fixed sample plots in the first and second generation of R. pseudoacacia forests was determined. Additionally, the carbon storage of R. pseudoacacia stands was calculated.

    Result 

    The optimum tree height growth curve of R. pseudoacacia was fitted, and the stand density management map composed of equivalent tree height lines, equivalent diameter lines, equivalent thinning density lines, maximum density lines and natural sparse line was established. Finally, the density management map of stand productivity, carbon sequestration and water conservation ability was obtained.

    Conclusion 

    In terms of height growth curve of R. pseudoacacia tree, the application of R. pseudoacacia stand density management map in yield prediction, resource inventory and thinning operation design is analyzed. According to the reliability verification results, the model obtained in this study is suitable for R. pseudoacacia plantations in the hilly area of western Henan Province of northern China.

  • [1]
    王雪. 金洞林场闽楠人工林多功能经营密度控制图研建[D]. 长沙: 中南林业科技大学, 2021.

    Wang X. Research and construction of multi-functional management density control map of Phoebe bournei plantation in Jindong Forest Farm[D]. Changsha: Central South University of Forestry and Technology, 2021.
    [2]
    Newell J P, Vos R O. Accounting for forest carbon pool dynamics in product carbon footprints: challenges and opportunities[J]. Environmental Impact Assessment Review, 2012, 37: 23−36. doi: 10.1016/j.eiar.2012.03.005
    [3]
    刘雨欣. 间伐保留密度对杉木中龄林碳储量的影响[J]. 福建林业科技, 2023, 50(1): 17−22, 30.

    Liu Y X. Effect of thinning reserve density on carbon storage of middle-aged Chinese fir plantations[J]. Fujian Forestry Science and Technology, 2023, 50(1): 17−22, 30.
    [4]
    贾汉森, 段劼, 马履一, 等. 不同林龄刺槐人工林碳储量及分配规律[J]. 安徽农业大学学报, 2017, 44(4): 636−642.

    Jia H S, Duan J, Ma L Y, et al. Characteristics of carbon storage and sequestration in different age Robinia psedudoacia plantations[J]. Journal of Anhui Agricultural University, 2017, 44(4): 636−642.
    [5]
    孙向阳, 王根绪, 吴勇, 等. 川西亚高山典型森林生态系统截留水文效应[J]. 生态学报, 2013, 33(2): 501−508. doi: 10.5846/stxb201111301828

    Sun X Y, Wang G X, Wu Y, et al. Hydrologic regime of interception for typical forest ecosystem at subalpine of western Sichuan, China[J]. Acta Ecologica Sinica, 2013, 33(2): 501−508. doi: 10.5846/stxb201111301828
    [6]
    王超, 樊琳琳, 杨健, 等. 不同经营措施对冀北山地油松林分水源涵养功能的影响[J]. 林业与生态科学, 2023, 38(1): 1−7.

    Wang C, Fan L L, Yang J, et al. Study on the influence of forest management on the water conservation capacity of Pinus tabulaeformis in mountain area of northern Hebei Province[J]. Forestry and Ecological Sciences, 2023, 38(1): 1−7.
    [7]
    王亚萍, 张淑兰, 韩勇, 等. 秦岭两种典型人工林不同密度时的枯落物持水功能差异[J]. 林业科学研究, 2023, 36(3): 100−108. doi: 10.12403/j.1001-1498.20220377

    Wang Y P, Zhang S L, Han Y, et al. Differences in the water-retention function of humus layer between two typical forests with different densities in the Qinling Mountains[J]. Forest Research, 2023, 36(3): 100−108. doi: 10.12403/j.1001-1498.20220377
    [8]
    Zheng X, Chen L, Gong W, et al. Evaluation of the water conservation function of different forest types in northeastern China[J]. Sustainability, 2019, 11(15): 4075. doi: 10.3390/su11154075
    [9]
    郑颖, 冯健, 于世河, 等. 初植密度对4个落叶松无性系生长与干形的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 72−80.

    Zheng Y, Feng J, Yu S H, et al. Effects of initial planting density on growth and stem from of four Larix clones[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(6): 72−80.
    [10]
    Allen M, Brunner A, Antón-Fernández C, et al. The relationship between volume increment and stand density in Norway spruce plantations[J]. Forestry: an International Journal of Forest Research, 2021, 94(1): 151−165. doi: 10.1093/forestry/cpaa020
    [11]
    杨桂娟, 胡海帆, 孙洪刚, 等. 林分年龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114

    Yang G J, Hu H F, Sun H G, et al. The influences of stand age, planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Scientia Silvae Sinicae, 2019, 55(11): 126−136. doi: 10.11707/j.1001-7488.20191114
    [12]
    Li Q, Liu Z, Jin G. Impacts of stand density on tree crown structure and biomass: a global meta-analysis[J]. Agricultural and Forest Meteorology, 2022, 326: 109181. doi: 10.1016/j.agrformet.2022.109181
    [13]
    Hernández J, del Pino A, Vance E D, et al. Eucalyptus and Pinus stand density effects on soil carbon sequestration[J]. Forest Ecology and Management, 2016, 368: 28−38. doi: 10.1016/j.foreco.2016.03.007
    [14]
    王梓名, 赵明明, 任云卯, 等. 主伐龄油松建筑材林生长及土壤性质对林分密度的响应[J]. 北京林业大学学报, 2022, 44(12): 88−101. doi: 10.12171/j.1000-1522.20210442

    Wang Z M, Zhao M M, Ren Y M, et al. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88−101. doi: 10.12171/j.1000-1522.20210442
    [15]
    Zhang Y, Liu T, Guo J, et al. Changes in the understory diversity of secondary Pinus tabulaeformis forests are the result of stand density and soil properties[J]. Global Ecology and Conservation, 2021, 28: e01628. doi: 10.1016/j.gecco.2021.e01628
    [16]
    云慧雅, 毕华兴, 焦振寰, 等. 晋西黄土区不同林分类型和密度条件下林下灌草组成及多样性特征[J]. 浙江农林大学学报, 2023, 40(3): 569−578. doi: 10.11833/j.issn.2095-0756.20220433

    Yun H Y, Bi H X, Jiao Z H, et al. Composition and diversity of understory plants under different stand types and densities in loess region of western Shanxi Province[J]. Journal of Zhejiang A&F University, 2023, 40(3): 569−578. doi: 10.11833/j.issn.2095-0756.20220433
    [17]
    Hedwall P O, Holmström E, Lindbladh M, et al. Concealed by darkness: how stand density can override the biodiversity benefits of mixed forests[J]. Ecosphere, 2019, 10(8): e02835. doi: 10.1002/ecs2.2835
    [18]
    Lan J, Lei X, He X, et al. Stand density, climate and biodiversity jointly regulate the multifunctionality of natural forest ecosystems in northeast China[J]. European Journal of Forest Research, 2023: 1−15.
    [19]
    Ando T. Ecological studies on the stand density control in even-aged pure stand[J]. Bulletin of the Government Forest Experiment Station, 1968, 210: 151−153.
    [20]
    向玉国. 金沟岭林场落叶松人工林系列密度控制图研究[D]. 北京: 北京林业大学, 2014.

    Xiang Y G. Study on density control map of larch plantation series in Jingouling Forest Farm[D]. Beijing: Beijing Forestry University, 2014.
    [21]
    尹泰龙, 韩福庆, 迟金城, 等. 林分密度控制图的编制与应用[J]. 中国林业科学, 1978(3): 1−11.

    Yin T L, Han F Q, Chi J C, et al. Preparation and application of stand density control map[J]. Scientia Silvae Sinicae, 1978(3): 1−11.
    [22]
    贾茜, 贾忠奎, 孙启越, 等. 油松建筑材密度管理图的编制及其应用[J]. 东北林业大学学报, 2021, 49(2): 65−69.

    Jia Q, Jia Z K, Sun Q Y, et al. Preparation and application of density management map of Pinus tabulaeformis[J]. Journal of Northeast Forestry University, 2021, 49(2): 65−69.
    [23]
    靳爱仙, 周国英, 史大林, 等. 马尾松人工林碳储量密度控制图的编制[J]. 西北林学院学报, 2009, 24(3): 54−57.

    Jin A X, Zhou G Y, Shi D L, et al. Carbon storage density control map of Masson pine plantation[J]. Journal of Northwest Forestry College, 2009, 24(3): 54−57.
    [24]
    Valbuena P P, Peso T C E, Bravo O F. Stand density management diagrams for two mediterranean pine species in eastern Spain[J]. Forest Systems, 2008, 17(2): 97−104.
    [25]
    Vacchiano G, Motta R, Long J N, et al. A density management diagram for Scots pine (Pinus sylvestris L.): a tool for assessing the forest’s protective effect[J]. Forest Ecology and Management, 2008, 255(7): 2542−2554. doi: 10.1016/j.foreco.2008.01.015
    [26]
    陈楠楠, 彭祚登, 李云. 不同无性系刺槐生长、材性及适用性[J]. 中南林业科技大学学报, 2023, 43(4): 164−173.

    Chen N N, Peng Z D, Li Y. Growth, material properties and suitability of different Robinia pseudoacacia clones[J]. Journal of Central South University of Forestry and Technology, 2023, 43(4): 164−173.
    [27]
    谭晓红, 刘诗琦, 马履一, 等. 豫西刺槐能源林的热值动态[J]. 生态学报, 2012, 32(8): 2483−2490. doi: 10.5846/stxb201005220786

    Tan X H, Liu S Q, Ma L Y, et al. Dynamics of caloric value of Robinia pseudoacacia L. energy forest in the west of Henan Province[J]. Acta Ecologica Sinica, 2012, 32(8): 2483−2490. doi: 10.5846/stxb201005220786
    [28]
    常译方, 毕华兴, 许华森, 等. 晋西黄土区不同密度刺槐林对土壤水分的影响[J]. 水土保持学报, 2015, 29(6): 227−232.

    Chang Y F, Bi H X, Xu H S, et al. Influence of different dendities of Robinia pseudoacacia forest on soil moisture in loess region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2015, 29(6): 227−232.
    [29]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2): 251−257.

    Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of Robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.
    [30]
    毛秀红, 荀守华, 张元帅, 等. 刺槐新品种‘蜜源1号’[J]. 园艺学报, 2018, 45(增刊2): 2845−2846.

    Mao X H, Xun S H, Zhang Y S, et al. A new cultivar of Robinia pseudoacacia ‘Miyuan 1’[J]. Acta Horticulturae Sinica, 2018, 45(S2): 2845−2846.
    [31]
    王颖. 6种刺槐种质蜜源性状的研究[D]. 泰安: 山东农业大学, 2019.

    Wang Y. Study on nectar source traits of 6 Robinia pseudoacacia germplasm[D]. Taian: Shandong Agricultural University, 2019.
    [32]
    耿兵, 王华田, 王延平, 等. 刺槐萌生林与实生林的生长比较[J]. 中国水土保持科学, 2013, 11(2): 59−64. doi: 10.3969/j.issn.1672-3007.2013.02.010

    Geng B, Wang H T, Wang Y P, et al. Comparative study of coppice and seeding forest of Robinia pseudoacacia L.[J]. Science of Soil and Water Conservation, 2013, 11(2): 59−64. doi: 10.3969/j.issn.1672-3007.2013.02.010
    [33]
    王雅慧, 彭祚登, 李云. 豫西浅山区不同世代刺槐林土壤养分与结构特征[J]. 北京林业大学学报, 2020, 42(3): 54−64. doi: 10.12171/j.1000-1522.20190263

    Wang Y H, Peng Z D, Li Y. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54−64. doi: 10.12171/j.1000-1522.20190263
    [34]
    张江涛, 茹桃勤, 付祥建. 豫西丘陵区刺槐无性系生长气候因子研究[J]. 林业科技, 2009, 34(6): 1−4.

    Zhang J T, Ru T Q, Fu X J. Study on climate factors of Robinia pseudoacacia clones in hilly area of western Henan Province[J]. Forestry Science & Technology, 2009, 34(6): 1−4.
    [35]
    刘迎春, 王秋凤, 于贵瑞, 等. 黄土丘陵区两种主要退耕还林树种生态系统碳储量和固碳潜力[J]. 生态学报, 2011, 31(15): 4277−4286.

    Liu Y C, Wang Q F, Yu G R, et al. Ecosystems carbon storage and carbon sequestration potential of two main tree species for the Grain for Green Project on China’s hilly Loess Plateau[J]. Acta Ecologica Sinica, 2011, 31(15): 4277−4286.
    [36]
    Deng L, Han Q, Zhang C, et al. Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development[J]. Land Degradation & Development, 2017, 28(3): 906−917.
    [37]
    刘维, 张晓丽, 马菁. 鹫峰国家森林公园主要乔木树种含碳率分析[J]. 西北林学院学报, 2011, 26(5): 214−218.

    Liu W, Zhang X L, Ma J. Carbon content rate analysis on the main arbor species in Jiufeng National Forest Park[J]. Journal of Northwest Forestry University, 2011, 26(5): 214−218.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (527) PDF downloads (71) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return