Citation: | Kong Jing, Lü Wenhua, Xu Shiyu, Yang Zhiyi. Size and shape effects of wood compression energy absorption characteristics[J]. Journal of Beijing Forestry University, 2023, 45(11): 152-160. DOI: 10.12171/j.1000-1522.20230252 |
The research aimed to investigate the influence of specimen size and shape on wood compression energy absorption characteristics and guide the scientific test and evaluation of wood compression energy absorption properties.
Through a quasi-static large deformation compression test, the compressive response and energy absorption characteristics of Populus tomentosa, Chinese fir, paulownia and balsa wood under the different cross-sectional dimensions (20 mm × 20 mm, 50 mm × 50 mm), different cross-sectional shapes (20 mm round and 20 mm × 20 mm square) were investigated, and analyzed by t-test.
(1) The stress-strain curve of wood under compression was unaffected by specimen size and shape, following a “three-stage” pattern. (2) The size effect of wood compressive crushing strength along grain was significant, and the crushing strength decreased with the increase of specimen size. The crushing strength along the grain of paulownia and balsa wood decreased from 30.94 and 14.56 MPa for small-sized specimens to 26.06 and 13.37 MPa for large-sized specimens, and the size effect coefficients were 0.84 and 0.92, respectively. The transverse compressive strength, the failure mode and compressive energy absorption performance of wood along grain and cross grain were all not affected by specimen size. (3) The compressive crushing strength along the grain of wood had a significant shape effect. The compressive strength of four kinds wood along the grain of round specimens was smaller than that of square specimens, and the shape effect coefficient ranged from 0.88 to 0.93. The specimen shape effect of wood compression failure mode and energy absorption performance was related to tree species characteristics. The failure mode and energy absorption performance of Chinese fir, paulownia and balsa wood were not influenced by the specimen shape. The energy absorption performance of the round specimens of Populus tomentosa wood was significantly greater than those of the square specimens, which had an obvious shape effect. (4) The compressive strength of wood increased with an increase in wood density and compressive strength, with a more apparent size and shape effect.
The energy absorption characteristics of low-density wood have no size and shape effects, so it is recommended to use small-size square specimens with easy sampling, simple processing, fewer consumables and low cost for compression energy absorption evaluation.
[1] |
Zhong W, Zhang Z, Chen X, et al. Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions[J]. Acta Mechanica Sinica, 2021, 37: 1136−1151. doi: 10.1007/s10409-021-01112-z
|
[2] |
李继承, 张斌, 谢若泽, 等. 软木材料力学行为及其缓冲吸能特性研究进展综述[J]. 装备环境工程, 2021, 18(5): 68−78.
Li J C, Zhang B, Xie R Z, et al. Research advance on the mechanical behaviors and energy absorption of soft wood[J]. Equipment Environmental Engineering, 2021, 18(5): 68−78.
|
[3] |
田振农, 张乐文. 木材的宏观力学模型及断裂机理[J]. 北京林业大学学报, 2010, 32(2): 153−156.
Tian Z N, Zhang L W. Macro-mechanical model and fracture mechanism of wood[J]. Journal of Beijing Forestry University, 2010, 32(2): 153−156.
|
[4] |
Vural M, Ravichandran G. Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis[J]. International Journal of Solids and Structures, 2003, 40(9): 2147−2170. doi: 10.1016/S0020-7683(03)00057-X
|
[5] |
Wouts J, Haugou G, Oudjene M, et al. Strain rate effects on the compressive response of wood and energy absorption capabilities part A: experimental investigations[J]. Composite Structures, 2016, 149: 315−328. doi: 10.1016/j.compstruct.2016.03.058
|
[6] |
徐朝阳, 李健昱, 翟胜丞, 等. 樟子松木材横纹压缩时黏弹性与能量吸收特性研究[J]. 南京林业大学学报(自然科学版), 2016, 59(2): 127−131.
Xu Z Y, Li J Y, Zhai S C, et al. Viscoelastic and energy absorption characteristics of scotch pine wood in across-compression[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 59(2): 127−131.
|
[7] |
周欢, 徐朝阳, 李健昱. 樟子松密实化前后吸能特性的对比[J]. 林业工程学报, 2016, 1(3): 38−41.
Zhou H, Xu Z Y, Li J Y. A comparison of energy absorption characteristics of Mongolian pine wood before and after densification[J]. Journal of Forestry Engineering, 2016, 1(3): 38−41.
|
[8] |
谢若泽, 郭玲梅, 李尚昆, 等. 毛白杨静态压缩力学性能研究及吸能分析[J]. 装备环境工程, 2021, 18(5): 106−112.
Xie R Z, Guo L M, Li S K, et al. Investigation of quasi-static compression mechanical properties of Populus tomentosa[J]. Equipment Environmental Engineering, 2021, 18(5): 106−112.
|
[9] |
边明明, 殷亚方, 宋坤霖, 等. 不同压缩加载速度对杉木微观结构和力学性能影响[J]. 建筑材料学报, 2012, 15(4): 575−580.
Bian M M, Yin Y F, Song K L, et al. Effect of loading rate on microstructure characteristics and mechanical properties of Chinese fir[J]. Journal of Building Materials, 2012, 15(4): 575−580.
|
[10] |
Reiterer A, Stanzl-Tschegg S E. Compressive behaviour of softwood under uniaxial loading at different orientations to the grain[J]. Mechanics of Materials, 2001, 33(12): 705−715. doi: 10.1016/S0167-6636(01)00086-2
|
[11] |
吕文华, 郑雅娴, 柴宇博, 等. 大型运输容器减震用改性木材的研制[J]. 东北林业大学学报, 2015, 43(2): 75−79.
Lü W H, Zheng Y X, Chai Y B, et al. Preparation and characterization of special shock absorption wood[J]. Journal of Northeast Forestry University, 2015, 43(2): 75−79.
|
[12] |
龙克莹, 王东, 林兰英, 等. 木材多尺度界面结构及其力学性能的研究进展[J]. 中国造纸学报, 2021, 36(1): 88−94.
Long K Y, Wang D, Lin L Y, et al. Research progress in multi-scale interface structure and mechanical properties of wood[J]. Transactions of China Pulp and Paper, 2021, 36(1): 88−94.
|
[13] |
Schlotzhauer P, Nelis P A, Bollmus S, et al. Effect of size and geometry on strength values and MOE of selected hardwood species[J]. Wood Material Science & Engineering, 2017, 12(3): 149−157.
|
[14] |
刘元. 试样尺寸对木材物理力学性质的影响[J]. 中南林学院学报, 2000, 20(4): 46−50.
Liu Y. The influence of sample dimension on the wood physics-mechanic properties[J]. Journal of Central South Forestry University, 2000, 20(4): 46−50.
|
[15] |
周海宾, 江京辉, 王学顺, 等. 兴安落叶松目测等级锯材抗拉强度的宽度尺寸效应[J]. 北京林业大学学报, 2012, 34(1): 127−130.
Zhou H B, Jiang J H, Wang X S, et al. Size effects of width on tensile strength of visually graded Chinese larch lumber[J]. Journal of Beijing Forestry University, 2012, 34(1): 127−130.
|
[16] |
Li Q M, Magkiriadis I, Harrigan J J. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics, 2006, 42(5): 371−392. doi: 10.1177/0021955X06063519
|
[17] |
Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering & Science, 2010, 21(15): 1010−1014.
|
[18] |
Gindl W, Teischinger A. Axial compression strength of Norway spruce related to structural variability and lignin content[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(12): 1623−1628. doi: 10.1016/S1359-835X(02)00182-3
|
[19] |
钟卫洲, 邓志方, 黄西成, 等. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5): 25−33. doi: 10.6052/j.issn.1000-4750.2014.10.0872
Zhong W Z, Deng Z F, Huang X C, et al. Investigation on anisotropic behavior of spruce mechanical properties under medium strain rate loading conditions[J]. Engineering Mechanics, 2016, 33(5): 25−33. doi: 10.6052/j.issn.1000-4750.2014.10.0872
|
[20] |
成俊卿. 中国木材志[M]. 北京: 中国林业出版社, 1992.
Cheng J Q. Atlas of Chinese wood[M]. Beijing: China Forestry Publishing House, 1992.
|
[21] |
杨成球, 吴政. 全级配混凝土强度尺寸效应及变形特性研究[J]. 大连理工大学学报, 1997(增刊1): 131−136.
Yang C Q, Wu Z. Investigation of size effect on strength and deformation behavior of full mix concrete[J]. Journal of Dalian University of Technology, 1997(Suppl.1): 131−136.
|
[22] |
张坤, 王毅红, 卜永红, 等. 尺寸效应对生土立方体试件抗压强度的影响[J]. 兰州理工大学学报, 2021, 47(2): 107−112.
Zhang K, Wang Y H, Pu Y H, et al. Effect of different specimen size on raw soil materials[J]. Journal of Lanzhou University of Technology, 2021, 47(2): 107−112.
|
[23] |
da Silva A, Kyriakides S. Compressive response and failure of balsa wood[J]. International Journal of Solids and Structures, 2007, 44(25−26): 8685−8717. doi: 10.1016/j.ijsolstr.2007.07.003
|
[24] |
梁琼, 高占远, 阮冬, 等. 氧化石墨烯及样品形状对水泥基复合材料力学性能的影响[J]. 混凝土, 2022(11): 77-81, 86.
Liang Q, Gao Z Y, Ruan D, et al. Effects of GO and sample shape on mechanical properties of cement-based composites[J]. Concrete, 2022(11): 77−81, 86.
|
[25] |
陈宝春, 杨简, 黄卿维, 等. 超高性能混凝土形状与尺寸效应分析[J]. 福州大学学报(自然科学版), 2019, 47(3): 391−397.
Chen B C, Yang J, Huang Q W, et al. Analysis of shape and size effect of ultra-high performance concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(3): 391−397.
|
[26] |
冯波, 刘长武, 谢辉, 等. 改性高水材料尺寸与形状效应研究[J]. 工程科学与技术, 2017, 49(增刊2): 121−127.
Feng B, Liu C W, Xie H, et al. Experimental study on the size and the shape on high-water-content material that modified[J]. Advanced Engineering Sciences, 2017, 49 (Suppl.2): 121−127.
|
[1] | Wang Bo, He Zhengbin, Wang Zhenyu, Yi Songlin. Effects of zinc chloride impregnation treatment on dimensional stability and energy consumption of heat-treated Mongolian scots pine[J]. Journal of Beijing Forestry University, 2024, 46(2): 123-131. DOI: 10.12171/j.1000-1522.20230244 |
[2] | ZHANG Ying-nan, LU Jing, ZHANG Qi-chang, WANG Guo-sheng, SHAO Dian-kun, SHI Ying. Biomass,caloric value and standing crop energy of nine energy willow clones.[J]. Journal of Beijing Forestry University, 2016, 38(9): 55-61. DOI: 10.13332/j.1000-1522.20150223 |
[3] | PAN Xin, WANG Yu-jie, ZHANG Hui-lan, WANG Yun-qi, WANG Bin, GELIBA. Runoff and sediment effects in erosive rainfall of typical plant conservation practice in the upper reach of Guanting Reservoir, Beijing[J]. Journal of Beijing Forestry University, 2015, 37(7): 76-84. DOI: 10.13332/j.1000-1522.20150014 |
[4] | YU Lu, SU De-rong, LIU Yi-shan. Characters of leaf water absorption for three turfgrasses.[J]. Journal of Beijing Forestry University, 2013, 35(3): 97-101. |
[5] | ZHOU Hai-bin, JIANG Jing-hui, WANG Xue-shun, REN Hai-qing. Size effects of width on tensile strength of visuallygraded Chinese larch lumber[J]. Journal of Beijing Forestry University, 2012, 34(1): 127-130. |
[6] | WANG Fei, YIN Wei-lun, XIA Xin-li, XIE Qian-jin. Mutagenic effect of aerospace on morphological and photosynthetic characteristics of tall fescue SP1.[J]. Journal of Beijing Forestry University, 2010, 32(3): 106-111. |
[7] | XU Zhi-gang, CUI Jin, DI Xiu-ru. Effects of different spectral energy distribution on tissue culture of Oncidium in vitro. [J]. Journal of Beijing Forestry University, 2009, 31(4): 45-50. |
[8] | JIANG Feng, LI Ji-yue, , HE Qian, ZHU Jun. Water-releasing regulations and characteristics of energyfree watercontrolled ba[J]. Journal of Beijing Forestry University, 2008, 30(5): 58-65. |
[9] | XU Jian-qi, ZHANG Cai-hong, ZHANG Da-hong. Quantity analysis on the biomass of woody bio-energy trees[J]. Journal of Beijing Forestry University, 2006, 28(6): 98-102. |
[10] | GUO Ming-hui, YAN Li, LI Hai-ying, WANG Jin-man. Effect of silvicultural measures on tracheid shape properties of Pinus sylvestris var. mongolica[J]. Journal of Beijing Forestry University, 2005, 27(3): 79-82. |
1. |
孔静,吕文华,徐诗雨,杨志一. 周向约束对木材压缩吸能特性的影响. 东北林业大学学报. 2024(04): 129-134 .
![]() | |
2. |
徐诗雨,胡极航,孔静,杨志一,吕文华. 三聚氰胺-尿素-甲醛树脂浸渍改性对杉木压缩吸能特性的影响. 木材科学与技术. 2024(03): 33-39+55 .
![]() |