Citation: | Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374 |
This paper studies the growth adaptability pattern of Populus euphratica root under normal and salt stress conditions, effectively locates the significant quantitative trait loci (QTL) affecting the phenotypic traits of P. euphratica root, visualizes genetic regulation network, and explores the genetic regulation mechanism of phenotypic traits of P. euphratica root under salt stress.
Based on phenotypic and genotypic data of P. euphratica under normal and salt stress conditions, statistical methods such as principal component analysis, variance analysis, and dynamic model fitting were used to analyze phenotypic variation patterns, locate significant QTL by functional mapping, and visualize the genetic network of phenotypic traits in root system under salt stress.
(1) Correlation analysis showed that P. euphratica root traits exhibited high synergy under normal conditions, but under salt stress, the roots reduced in number while increased in average length. PCA identified main root length, main root surface area, and main root number as the primary phenotypic traits for study. Compared with normal conditions, salt stress inhibited the growth of these three traits. Comparison of goodness-of-fit R2 revealed that the Gompertz model performed best among Logistic, Richards, and Weibull growth equations. (2) Under normal conditions, 100, 89, and 85 significant QTLs regulating main root length, main root surface area, and main root number were identified, respectively, mainly distributed on linkage groups 1, 4, 5, 14, and 15. Under salt stress, 91, 85, and 87 significant QTLs regulating these three traits were located, concentrated on linkage groups 2, 3, 5, 13, and 18. (3) Genetic effect analysis showed that the significant QTLs affecting main root length exhibited continuously increasing genetic effects over time under both conditions. The significant QTLs influencing main root number mainly showed a continuous increase, with some loci displaying trends of first increasing then decreasing or first decreasing then increasing. The significant QTLs affecting main root surface area exhibited three patterns under normal conditions: first increasing then decreasing, continuously fluctuating upwards, and first increasing then decreasing before increasing again, while most showed a continuous increase under salt stress. (4) Under normal conditions, 21, 14, and 14 candidate genes were annotated for traits of main root length, main root surface area, and main root number, respectively, mainly involved in basic metabolic processes, auxin transport, and chromosome segregation functions. Under salt stress, 19, 17, and 15 candidate genes were annotated for these traits, respectively, primarily enriched in stress response, redox balance, iron ion transport, and tRNA modification functions. (5) The genetic network was visualized, revealing hub genes (LOC105114908 and LOC105120566) might involve in P. euphratica’s response to salt stress.
Salt stress significantly affects the growth and development of P. euphratica roots. Using various statistical models, significant QTLs influencing root growth are located, demonstrating their dynamic genetic effects with environmental changes. The results provide new insights into understanding the genetic regulatory basis of P. euphratica’s adaptation to salt stress and offer methodological support for forest tree genetic improvement research.
[1] |
刘立盘, 涂圣勇, 杨爱红, 等. miRNA及其靶基因调控植物根系生长发育的研究进展[J]. 中国农业大学学报, 2022, 27(11): 47−59. doi: 10.11841/j.issn.1007-4333.2022.11.05
Liu L P, Tu S Y, Yang A H, et al. Progress of miRNAs and their target genes in the regulation of plant root growth and development[J]. Journal of China Agricultural University, 2022, 27(11): 47−59. doi: 10.11841/j.issn.1007-4333.2022.11.05
|
[2] |
郭童鑫, 姚晓华, 吴昆仑, 等. 青稞和豌豆根系形态和养分效率对种植模式和施肥水平的响应[J]. 植物营养与肥料学报, 2023, 29(6): 1048−1059. doi: 10.11674/zwyf.2022691
Guo T X, Yao X H, Wu K L, et al. Root morphology and nutrient efficiency of barley and pea in response to cropping patterns and fertilization levels[J]. Journal of Plant Nutrition and Fertilizer, 2023, 29(6): 1048−1059. doi: 10.11674/zwyf.2022691
|
[3] |
Gao J, Zhao Y, Zhao Z K, et al. RRS1 shapes robust root system to enhance drought resistance in rice[J]. New Phytologist, 2023, 238(3): 1146−1162. doi: 10.1111/nph.18775
|
[4] |
Huang G, Sun Y F, Zhang X, et al. Adaptation to low nitrogen and salt stresses in the desert poplar by effective regulation of nitrogen assimilation and ion balance[J]. Plant Physiology and Biochemistry, 2022, 193: 14−24. doi: 10.1016/j.plaphy.2022.10.021
|
[5] |
Wang S J, Huang J J, Wang X D, et al. PAGERF16 of Populus promotes lateral root proliferation and sensitizes to salt stress[J]. Frontiers in Plant Science, 2021, 12: 669143. doi: 10.3389/fpls.2021.669143
|
[6] |
Fan L J, Wei D S, Yu X W, et al. Effects of SPSNAC042 transgenic Populus hopeiensis on root development, leaf morphology and stress resistance[J]. Breeding Science, 2023, 73(2): 180−192. doi: 10.1270/jsbbs.22079
|
[7] |
Liu R, Wen S S, Sun T T, et al. PAGWOX11/12A positively regulates the PAGSAUR36 gene that enhances adventitious root development in poplar[J]. Journal of Experimental Botany, 2022, 73(22): 7298−7311. doi: 10.1093/jxb/erac345
|
[8] |
Ma C X, Casella G, Wu R L. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751−1762. doi: 10.1093/genetics/161.4.1751
|
[9] |
Zhang M M, Bo W H, Xu F, et al. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica[J]. The Plant Journal, 2017, 90(5): 918−928. doi: 10.1111/tpj.13518
|
[10] |
Clark R T, MacCurdy R B, Jung J K, et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology, 2011, 156(2): 455−465. doi: 10.1104/pp.110.169102
|
[11] |
张苗苗. 胡杨根系生长动态对盐胁迫响应的 QTL 定位和上位性分析[D]. 北京: 北京林业大学, 2019.
Zhang M M. QTL mapping and epistasis effect analysis on dynamic root growth of Populus euphratica under salt stress [D]. Beijing: Beijing Forestry University, 2019.
|
[12] |
Verhulst P F. Recherches mathématiques sur la loi d’accroissement de la population[J]. Mémoires de l’académie Royale de Belgique, 1845, 18(1): 1−40.
|
[13] |
Richards F J. A flexible growth function for empirical use[J]. Journal of Experimental Botany, 1959, 10(2): 290−301. doi: 10.1093/jxb/10.2.290
|
[14] |
Dagogo J, Nduka E C, Ogoke U P. Comparative analysis of richards, gompertz and weibull models[J]. IOSR Journal of Mathematics, 2020, 16(1): 15−20.
|
[15] |
Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies[J]. Proceedings of the Royal Society of London, 1833, 2(115): 252−253.
|
[16] |
Zhao W, Chen Y Q, Casella G, et al. A non-stationary model for functional mapping of complex traits[J]. Bioinformatics, 2005, 21(10): 2469−2477. doi: 10.1093/bioinformatics/bti382
|
[17] |
潘东东, 李正帮, 张维, 等. 全基因组关联研究综述[J]. 应用概率统计, 2014, 30(1): 84−103.
Pan D D, Li Z B, Zhang W, et al. Overview of genome-wide association studies[J]. Applied Probability Statistics, 2014, 30(1): 84−103.
|
[18] |
Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 1996, 58(1): 267−288. doi: 10.1111/j.2517-6161.1996.tb02080.x
|
[19] |
Huang L M, Lai C P, Chen L F O, et al. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance[J]. Botanical Studies, 2015, 56(1): 1−12. doi: 10.1186/s40529-015-0082-x
|
[20] |
Yoshimura K, Ogawa T, Tsujimura M, et al. Ectopic expression of the human MutT-type Nudix hydrolase, HMTH1, confers enhanced tolerance to oxidative stress in Arabidopsis[J]. Plant and Cell Physiology, 2014, 55(9): 1534−1543. doi: 10.1093/pcp/pcu083
|
[21] |
Thatcher L F, Singh K B. The Arabidopsis altered in stress response2 is impaired in resistance to root and leaf necrotrophic fungal pathogens[J]. Plants, 2019, 8(3): 60. doi: 10.3390/plants8030060
|
[22] |
Hocher V, Ngom M, Carré-Mlouka A, et al. Signalling in actinorhizal root nodule symbioses[J]. Antonie Van Leeuwenhoek, 2019, 112(1): 23−29. doi: 10.1007/s10482-018-1182-x
|
[23] |
Levi O, Arava Y S. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase[J]. Nucleic Acids Research, 2021, 49(1): 432−443. doi: 10.1093/nar/gkaa1178
|
[24] |
Liang Z, Gong H Y, Lu K Y, et al. The genetic architecture of the root system during seedling emergence in Populus euphratica under salt stress and control environments[J]. Applied Sciences, 2024, 14(6): 2225. doi: 10.3390/app14062225
|
[25] |
王东洋, 黄月娇, 李欢, 等. 利用胡杨 F1 代愈伤组织定位耐盐基因[J]. 分子植物育种, 2018, 16(19): 6314−6325.
Wang D Y, Huang Y J, Li H, et al. The salt-tolerant gene was located in the callus of F1 generation of Populus euphrus[J]. Molecular Plant Breeding, 2018, 16(19): 6314−6325.
|
[26] |
Bieganowski P, Shilinski K, Tsichlis P N, et al. CDC123 and checkpoint forkhead associated with RING proteins control the cell cycle by controlling eIF2γ abundance[J]. Journal of Biological Chemistry, 2004, 279(43): 44656−44666. doi: 10.1074/jbc.M406151200
|
[27] |
Liu J, Li J, Deng C, et al. Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars[J]. Tree Physiology, 2024, 44(3): tpae020. doi: 10.1093/treephys/tpae020
|
[28] |
Zhao C Y, Si J H, Feng Q, et al. Physiological response to salinity stress and tolerance mechanics of Populus euphratica[J]. Environmental Monitoring and Assessment, 2017, 189: 1−11. doi: 10.1007/s10661-016-5706-4
|
[29] |
Pan L, Yang Z F, Wang J P, et al. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum)[J]. PLoS One, 2017, 12(9): e0184289. doi: 10.1371/journal.pone.0184289
|
[30] |
Matsumoto T, Shimada S, Hata Y, et al. Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697[J]. Enzyme and Microbial Technology, 2015, 68: 10−14. doi: 10.1016/j.enzmictec.2014.10.001
|
[31] |
Liu Y, Khan A R, Gan Y. C2H2 zinc finger proteins response to abiotic stress in plants[J]. International Journal of Molecular Sciences, 2022, 23(5): 2730. doi: 10.3390/ijms23052730
|
1. |
施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
![]() | |
2. |
崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
![]() | |
3. |
王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
![]() | |
4. |
李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
![]() | |
5. |
王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
![]() | |
6. |
陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 .
![]() | |
7. |
屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
![]() | |
8. |
马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
![]() | |
9. |
石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
![]() | |
10. |
梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
![]() | |
11. |
王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .
![]() |