Citation: | Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055 |
This paper aims to establish a genetic transformation system of jujube callus and optimize the identification method for selecting positive plants using the callus of ‘Jingzao 39’ as explants.
Using ‘Jingzao 39’ callus as plant material, the modified vector containing the reporter gene eYGFPuv was transformed by agrobacterium tumefaciens mediated method, genetic transformation was performed by agrobacterium tumefaciens mediated method, the effects of pre-culture time, agrobacterium concentration, infection time, acetosyringone (AS) mass concentration and co-culture time on genetic transformation of ‘Jingzao 39’ were investigated to establish a genetic transformation system of jujube callus and optimize the identification method for selecting positive plants.
(1) The minimum lethal concentration of kanamycin on callus was 30 mg/L. (2)The optimal treatment conditions of genetic transformation included that pre-culture time was 4 d, bacterial solution concentration OD600 was 0.6, infection time was 20 min, AS mass concentration was 100 μmol/L, co-culture time was 4 d. (3) The positive callus group showed bright fluorescent green under 365 nm ultraviolet light and the transformation rate was averaged 21.2%.
Through comparative experiments, the ‘Jingzao 39’ callus genetic transformation system is successfully established, which provides a new method for accelerating the genetic transformation of jujube.
[1] |
郭烨, 崔艳红, 孔德仓, 等. 茶壶枣离体多倍体诱导关键技术研究[J]. 北京林业大学学报, 2019, 41(7): 49−56.
Guo Y, Cui Y H, Kong D C, et al. Study on the key techniques of polyploid induction in vitro of Chinese jujube[J]. Journal of Beijing Forestry University, 2019, 41(7): 49−56.
|
[2] |
祁业凤, 刘孟军. 两个胚败育率不同的枣品种果实生育期内源激素的变化[J]. 园艺学报, 2004, 33(6): 800−802. doi: 10.3321/j.issn:0513-353X.2004.06.021
Qi Y F, Liu M J. Changes of endogenous hormones in fruit growth period of two jujube varieties with different embryo abortion rates[J]. Acta Horticulture Sinica, 2004, 33(6): 800−802. doi: 10.3321/j.issn:0513-353X.2004.06.021
|
[3] |
潘依玲, 鲍荆凯, 吴翠云, 等. 雄性不育枣‘JMS2’ × ‘交城5号’杂交F1代花性状遗传变异分析[J]. 西北农业学报, 2023, 32(12): 1913−1921. doi: 10.7606/j.issn.1004-1389.2023.12.005
Pan Y L, Bao J K, Wu C Y, et al. Analysis on genetic variation of flower characters of F1 generation of male sterile jujube ‘JMS2’ × ‘Jiaocheng 5’[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(12): 1913−1921. doi: 10.7606/j.issn.1004-1389.2023.12.005
|
[4] |
周义杰, 姜梦嫣, 闫希焕, 等. 枣树遗传转化研究进展[J]. 北京农学院学报, 2019, 34(1): 107−112.
Zhou Y J, Jiang M Y, Yan X H, et al. Research progress of genetic transformation of Jujube[J]. Journal of Beijing University of Agriculture, 2019, 34(1): 107−112.
|
[5] |
崔艳红, 王欢, 豆苏含, 等. 农杆菌介导酸枣叶片遗传转化SPDS基因体系的建立[J]. 分子植物育种, 2018, 16(20): 6710−6717.
Cui Y H, Wang H, Dou S H, et al. Establishment of SPDS gene system mediated by Agrobacterium tumefaciens in jujube leaves[J]. Molecular Plant Breeding, 2018, 16(20): 6710−6717.
|
[6] |
何业华, 林良斌, 熊兴华, 等. 根癌农杆菌介导的枣树遗传转化系统的建立[J]. 分子植物育种, 2003, 1(5/6): 683−686. doi: 10.3969/j.issn.1672-416X.2003.05.015
He Y H, Lin L B, Xiong X H, et al. Establishment of genetic transformation system of jujube tree mediated by Agrobacterium tumefaciens[J]. Molecular Plant Breeding, 2003, 1(5/6): 683−686. doi: 10.3969/j.issn.1672-416X.2003.05.015
|
[7] |
Gu X F, Meng H, Qi G, et al. Agrobacterium-mediated transformation of the winter jujube (Ziziphus jujuba Mill.)[J]. Plant Cell, Tissue & Organ Culture, 2008, 94(1): 23−32.
|
[8] |
李亚梅, 马福利, 张山奇, 等. 酸枣愈伤组织转化体系构建及在ZjBRC1调控ZjYUCCA表达中的应用[J]. 园艺学报, 2022, 49(4): 749−757.
Li Y M, Ma F L, Zhang S Q, et al. Construction of callus transformation system of jujube acid and its application in regulation of ZjYUCCA expression by ZjBRC1[J]. Acta Horticulturae Sinica, 2012, 49(4): 749−757.
|
[9] |
潘青华, 白金, 王保强. 枣鲜食优质新品种‘京枣39’[J]. 中国果树, 2003(4): 3−4. doi: 10.3969/j.issn.1000-8047.2003.04.002
Pan Q H, Bai J, Wang B Q. New high quality jujube variety ‘Jingzao 39’[J]. China Fruits, 2003(4): 3−4. doi: 10.3969/j.issn.1000-8047.2003.04.002
|
[10] |
高艺, 薄文浩, 李颖岳, 等. ‘京枣39’离体叶片高效再生体系的建立[J]. 北京林业大学学报, 2023, 45(2): 68−77. doi: 10.12171/j.1000-1522.20210370
Gao Y, Bo W H, Li Y Y, et al. Establishment of efficient regeneration system of ‘Jingzao 39’ leaves in vitro[J]. Journal of Beijing Forestry University, 2023, 45(2): 68−77. doi: 10.12171/j.1000-1522.20210370
|
[11] |
Tong P, Liao G, Lu D, et al. ZjHXK5 and ZjHXK6 negatively regulate the sugar metabolism of Ziziphus jujuba Mill.[J]. Frontiers in Plant Science, 2024, 15: 1335120. doi: 10.3389/fpls.2024.1335120
|
[12] |
杨静, 曹海峰. 转基因农作物检测相关问题解析[J]. 科学技术创新, 2019(2): 141−142.
Yang J, Cao H F. Analysis of problems related to GMO crop detection[J]. Science and Technology Innovation, 2019(2): 141−142.
|
[13] |
Shimizu A, Shiratori I, horii K, et al. Molecular evolution of versatile derivatives from a GFP-like protein in the marine copepod Chiridius poppei[J]. PLoS One, 2017, 12(7): e0181186. doi: 10.1371/journal.pone.0181186
|
[14] |
Yuan G, Lu H, Tang D, et al. Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants[J]. Horticulture Research, 2021, 8(1): 234. doi: 10.1038/s41438-021-00663-3
|
[15] |
魏薇. 枣外源小麦磷转运蛋白基因(TaPT2)遗传转化研究[D]. 保定: 河北农业大学, 2013.
Wei W. Study on genetic transformation of exogenous phosphorus transporter gene (TaPT2) in jujube [D]. Baoding: Agricultural University of Hebei, 2013.
|
[16] |
冯晓东, 陈国梁, 乔璟, 等. 根癌农杆菌介导的骏枣愈伤组织遗传转化体系的研究[J]. 延安大学学报(自然科学版), 2014, 33(1): 54−57.
Feng X D, Chen G L, Qiao J, et al. Study on genetic transformation system of jujube callus mediated by Agrobacterium tumefaciens[J]. Journal of Yan’an University (Natural Science Edition), 2014, 33(1): 54−57.
|
[17] |
尚秉众, 田瑞康, 雒淑婷, 等. 狗头枣ACOI 基因RNAi表达载体的构建及遗传转化[J]. 延安大学学报(自然科学版), 2023, 42(4): 55−60.
Shang B Z, Tian R K, Luo S T, et al. Construction and genetic transformation of RNAi expression vector of ACOI gene in gosehead jujube[J]. Journal of Yan’an University (Natural Science Edition), 2023, 42(4): 55−60.
|
[18] |
陈兰, 朱晨, 李小桢, 等. 茶树遗传转化体系研究进展[J]. 安徽农业科学, 2019, 47(12): 14−18. doi: 10.3969/j.issn.0517-6611.2019.12.004
Chen L, Zhu C, Li X Z, et al. Research progress of genetic transformation system of tea plant[J]. Journal of Anhui Agricultural Sciences, 2019, 47(12): 14−18. doi: 10.3969/j.issn.0517-6611.2019.12.004
|
[19] |
刘闵豪, 徐郡儡, 叶靖, 等. 农杆菌介导的杜仲叶片愈伤组织遗传转化体系[J]. 林业科学, 2019, 56(2): 79−88.
Liu M H, Xu J L, Ye J, et al. Agrobacterium-mediated genetic transformation system of Eucommia ulmoides leaf callus[J]. Scientia Silvae Sinicae, 2019, 56(2): 79−88.
|
[20] |
武小娟, 吴娟, 王沛捷, 等. 马铃薯‘华颂66号’遗传转化体系的建立[J]. 中国农业大学学报, 2024, 29(1): 21−30. doi: 10.11841/j.issn.1007-4333.2024.01.02
Wu X J, Wu J, Wang P J, et al. Establishment of genetic transformation system of potato ‘Huasong 66’[J]. Journal of China Agricultural University, 2024, 29(1): 21−30. doi: 10.11841/j.issn.1007-4333.2024.01.02
|
[21] |
陈传武. 根癌农杆菌介导MdSPDS1和HAL2基因转化柑橘的研究[D]. 武汉: 华中农业大学, 2006.
Chen C W. Study on transformation of MdSPDS1 and HAL2 genes in citrus mediated by Agrobacterium tumefaciens[D]. Wuhan: Huazhong Agricultural University, 2006.
|
[22] |
Dong P C, Ikuo S, Akihisa S, et al. Generation of brilliant green fluorescent petunia plants by using a new and potent fluorescent protein transgene[J]. Scientific Reports, 2018, 8(1): 16556. doi: 10.1038/s41598-018-34837-2
|
[23] |
Fan S, Deng L, Yang H, et al. Synthesis and characteristic of a novel green fluorescent protein eYGFPuv[J]. Oil Crop Science, 2019, 4(2): 10.
|
[1] | Liu Fangni, Yin Hao, Liu Zhiruo. Impact of greening around residential buildings on winter sunlight in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(2): 114-122. DOI: 10.12171/j.1000-1522.20230056 |
[2] | Wang-Ren Zhongyuan, Zhang Shouhong, Zhang Sunxun, Yan Jing, Yang Hang, Wang Kai, Zhang Chengyu, Wei Liangyi. Effects of plant roots on the regulating function of green roof runoff[J]. Journal of Beijing Forestry University, 2023, 45(6): 108-116. DOI: 10.12171/j.1000-1522.20220274 |
[3] | Du Tiantian, Sun Xiangyang, Li Suyan, Zhou Wei, Zheng Yi, Fan Zhihui. Effects of landscaping waste mulching on soil fertility of urban green space[J]. Journal of Beijing Forestry University, 2021, 43(10): 110-117. DOI: 10.12171/j.1000-1522.20200402 |
[4] | Feng Xiaojie, Liu Guoliang, Zhang Wei, Sun Xiangyang, Li Suyan, Yan Subo. Effects of green waste compost on soil organic carbon fractions[J]. Journal of Beijing Forestry University, 2021, 43(7): 120-127. DOI: 10.12171/j.1000-1522.20210035 |
[5] | Zhang Deshun, Chen-Lu Qiyao, Xue Kaihua, Wang Zhen, Yao Chiyuan, Chen Yijia. Determination and analysis of the relationship between microclimate elements and greening structures in the city streets of Shanghai: taking Xuhui District and Yangpu District as examples[J]. Journal of Beijing Forestry University, 2021, 43(4): 124-131. DOI: 10.12171/j.1000-1522.20170359 |
[6] | Zhao Na, Li Shaoning, Xu Xiaotian, Wang Weina, Lu Shaowei. Water use efficiency and its influencing factors of typical greening tree species in Beijing region[J]. Journal of Beijing Forestry University, 2021, 43(3): 44-54. DOI: 10.12171/j.1000-1522.20200293 |
[7] | XIU Yu, WU Guo-dong, CHEN De-zhong, ZHAO Xiao-qing, TANG Wen-si, WANG Hua-fang. Propagation and afforestation techniques of tree peonies for greening and seed oil production[J]. Journal of Beijing Forestry University, 2017, 39(1): 112-118. DOI: 10.13332/j.1000-1522.20160045 |
[8] | LIU Li-na, XU Cheng-yang, DUAN Yong-hong, ZHOU Rui-zhi, DAI Xiang-yang. Root morphology of three greening conifer species in Beijing[J]. Journal of Beijing Forestry University, 2008, 30(1): 34-39. |
[9] | SUI Jin-ling, ZHANG Xiang, HU De-fu, LI Kai, WANG Min-zhong, FU Rui-hai. Relationship between bird communities and environment factors at green belts in the urban area of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(5): 121-126. DOI: 10.13332/j.1000-1522.2007.05.022 |
[10] | RAO Liang-yi, ZHU Jin-zhao, BI Hua-xing. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City.[J]. Journal of Beijing Forestry University, 2005, 27(1): 33-37. |
1. |
张薇,陆晓敏. 海盐乡土树种在城市园林中的应用调查与推广建议. 安徽农学通报. 2023(02): 79-82+96 .
![]() | |
2. |
孙连群,何林洁,黄雪雯. 黔南州乡土植物资源在都匀市旅游景观中的运用. 黔南民族师范学院学报. 2023(03): 106-112+120 .
![]() | |
3. |
饶显龙,何田恬,王冰彦,刘华红,李上善,丁洲,黎家宏,李珏. 浙江舟山群岛彩化植物资源调查及其园林应用评价. 北京林业大学学报. 2022(09): 127-136 .
![]() | |
4. |
简兴,鲍嵚,王雪娟. 屋顶绿化研究现状与展望. 世界林业研究. 2021(06): 14-19 .
![]() | |
5. |
刘乐乐,朱亚灵,许宏刚,周德旗,汉梅兰. 兰州市城市绿地木本植物多样性研究. 草原与草坪. 2020(01): 56-62 .
![]() | |
6. |
李荣喜,许雯,黄敏,张怡君,董斌. 广州市高架桥桥荫植物绿化现状及对策. 现代园艺. 2019(10): 148-150 .
![]() | |
7. |
柳泽鑫,吴悦宏,肖泽鑫,陈翠蓉. 潮汕地区居住区乡土植物资源及其应用分析. 防护林科技. 2018(06): 40-42+45 .
![]() | |
8. |
李峰,管志涛. 从建设海绵城市看濮阳市消落区植物景观配置. 濮阳职业技术学院学报. 2018(03): 110-112 .
![]() | |
9. |
李成璋,黄永艺. 海绵城市建设理念下江门主城区园林乡土植物的利用研究. 绿色科技. 2018(21): 49-54 .
![]() |