Citation: | Wang Xujie, Yao Sanchuan, Luo Cuimei, Mu Jun, Qi Chusheng. Effects of Lewis acid pretreatment on thermal degradation characteristics of wood[J]. Journal of Beijing Forestry University, 2024, 46(11): 133-140. DOI: 10.12171/j.1000-1522.20240207 |
The introduction of exogenous acid can solve the problem of high temperature and long time during heat treatment and improve thermal efficiency. It is necessary to clarify how exogenous acid affects wood components and thermal degradation characteristics of different woods.
Two types of softwood (larch, Chinese fir) and two types of hardwood (eucalyptus, poplar) were studied, and AlCl3 in Lewis acid was taken as exogenous acid. The thermal degradation characteristics of wood treated with different concentrations of AlCl3 solution (0, 0.1, 0.3 mol/L) were studied by Fourier transform infrared spectroscopy, thermogravimetric analysis and Flynm-Wall-Ozawa method.
AlCl3 treatment had significant effects on chemical structure of wood, which showed that the characteristic peak of hemicelluloses decreased significantly, the redshift occurred, the intensity of lignin characteristic peak increased, the total crystallinity index (TCI) decreased, the OH/CH2 ratio decreased, and the hydrogen bond strength (HBI) increased. After 0.3 mol/L AlCl3 solution treatment, TCI of the samples decreased by 29.17%−52.67%, OH/CH2 ratio decreased by 23.18%−51.01%, HBI value increased by 2.86%−13.27%, and the lateral order intensity of fiber was reduced by less than 8%. During the pyrolysis process, the degradation temperature of samples decreased, the degradation rate increased, and the activation energy decreased after AlCl3 treatment. When the treatment concentration was 0.3 mol/L, the initial degradation temperature of wood was reduced to below 110 ℃, a obvious shoulder peak appeared in softwood, and the activation energy of softwood was significantly lower than that of hardwood at the rapid thermal degradation stage.
The introduction of AlCl3 can significantly reduce the thermal degradation temperature of wood, thereby effectively improve the thermal modification efficiency of wood. Its catalytic effect on softwood wood is more significant than that on hardwood. The research can provide theoretical support for the application of Lewis acid in the field of low temperature heat treatment of wood.
[1] |
Xiang E L, Li J, Huang R F, et al. Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood[J]. Wood Science and Technology, 2022, 56(3): 899−919. doi: 10.1007/s00226-022-01383-0
|
[2] |
Bi W Z, Li H T, Hui D, et al. Effects of chemical modification and nanotechnology on wood properties[J]. Nanotechnology Reviews, 2022, 10(1): 978−1008.
|
[3] |
Kurkowiak K, Emmerich L, Militz H. Wood chemical modification based on bio-based polycarboxylic acid and polyols-status quo and future perspectives[J]. Wood Material Science & Engineering, 2021, 17(6): 1040−1054.
|
[4] |
Hill C, Altgen M, Rautkari L. Thermal modification of wood-a review: chemical changes and hygroscopicity[J]. Journal of Materials Science, 2021, 56(11): 6581−6614. doi: 10.1007/s10853-020-05722-z
|
[5] |
Pielhop T, Larrazabal G O, Studer M H, et al. Lignin repolymerisation in spruce autohydrolysis pretreatment increases cellulase deactivation[J]. Green Chemistry, 2015, 17(6): 3521−3532. doi: 10.1039/C4GC02381A
|
[6] |
Grosse C, Grigsby W J, Nol M, et al. Optimizing chemical wod modification with Oligomeric lactic acid by screening of processing conditions[J]. Journal of Wood Chemistry and Technology, 2019, 39(6): 385−398. doi: 10.1080/02773813.2019.1601739
|
[7] |
雒翠梅, 王旭洁, 母军, 等. 外源酸催化对木材半纤维素热降解规律的影响[J]. 北京林业大学学报, 2022, 44(4): 147−156. doi: 10.12171/j.1000-1522.20210426
Luo C M, Wang X J, Mu J, et al. Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose[J]. Journal of Beijing Forestry University, 2022, 44(4): 147−156. doi: 10.12171/j.1000-1522.20210426
|
[8] |
Dongre P, Driscoll M, Amidon T, et al. Lignin-furfural based adhesives[J]. Energies, 2015, 8(8): 7897−7914. doi: 10.3390/en8087897
|
[9] |
高义钦. 基于细胞壁化学组分与孔隙结构的热处理杉木力学性能研究[D]. 北京: 北京林业大学, 2023.
Gao Y Q. Mechanical properties of heat-treated Chinese fir based on cell wall chemical components and pore structure[D]. Beijing: Beijing Forestry University, 2023.
|
[10] |
Hosseinpourpia R, Adamopoulos S, Mai C. Effects of acid pre-treatments on the swelling and vapor sorption of thermally modified Scots pine (Pinus sylvestris L.) wood[J]. Bioresources, 2017, 13(1): 331−345.
|
[11] |
Hosseinpourpia R, Adamopoulos S, Holstein N, et al. Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid[J]. Polymer Degradation and Stability, 2017, 138(4): 161−168.
|
[12] |
Grosse C, Grigsby W J, Noel M, et al. optimizing chemical wood modification with oligomeric lactic acid by screening of processing conditions[J]. Journal of Wood Chemistry and Technology, 2019, 39(6): 39: 385−398.
|
[13] |
Qu L J, Wang Z Y, Qian J, et al. Effects of aluminum sulfate soaking pretreatment on dimensional stability and thermostability of heat-treated wood[J]. European Journal of Wood and Wood Products, 2020, 79(1): 189−198.
|
[14] |
Luo C M, Wang Q H, Wang X J, et al. Physical and mechanical characteristics of poplar treated with phosphoric acid under low-temperature thermal modification[J]. Wood Material Science & Engineering, 2022, 18(4): 1372−1381.
|
[15] |
梁韬. 基于Py-GC/MS 的半纤维素热裂解机理研究[D]. 杭州: 浙江大学, 2013.
Liang T. Mechanism research of hemicellulose pyrolvsis based on Py-GC/MS[D]. Hangzhou: Zhejiang University, 2013.
|
[16] |
周新. 三氯化铝促进的有机反应研究及应用发展[J]. 化工管理, 2020(24): 118−119. doi: 10.3969/j.issn.1008-4800.2020.23.057
Zhou X. Research and application development of organic reactions promoted by aluminum trichloride[J]. Chemical Engineering Management, 2020(24): 118−119. doi: 10.3969/j.issn.1008-4800.2020.23.057
|
[17] |
朱若楠. 金属氯化物催化半纤维素制备化学品及机理研究[D]. 北京: 北京林业大学, 2022.
Zhu R N. Study on catalytic conversion of hemicellulose into platform chemicals over metal chlorides and their reaction mechanisms[D]. Beijing: Beijing Forestry University, 2022.
|
[18] |
Cai C Y, Antikainen J, Luostarinen K, et al. Wetting-induced changes on the surface of thermally modified Scots pine and Norway spruce wood[J]. Wood Science and Technology, 2018, 52(5): 1181−1193. doi: 10.1007/s00226-018-1030-1
|
[19] |
张宇. 脲醛树脂刨花板热解模型研究[D]. 北京: 北京林业大学, 2016.
Zhang Y. Pyrolysis model of urea particleboard made by formaldehyde resin adhesive[D]. Beijing: Beijing Forestry University, 2016.
|
[20] |
储德淼. 基于阻燃/热处理联合改性杨木表面功能层构建与性能研究[D]. 北京: 北京林业大学, 2019.
Chu D M. Manufacturing and characterizing of the surface functional layer on poplar using combined treatment of fire retardancy and thermal modification[D]. Beijing: Beijing Forestry University, 2019.
|
[21] |
Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035
|
[22] |
王喆, 孙柏玲, 柴宇博, 等. 利用红外成像和纳米压痕测试技术研究热处理落叶松管胞性能[J]. 林业工程学报, 2022, 7(3): 67−72.
Wang Z, Sun B L, Chai Y B, et al. Study on properties of heat-treated larch tracheid using infrared imaging and nanoindentation tes[J]. Journal of Forestry Engineering, 2022, 7(3): 67−72.
|
[23] |
李赫龙. 作物秸秆木质素和半纤维素的分离纯化及结构表征[D]. 咸阳: 西北农林科技大学, 2016.
Li H L. Isolation and structure characterization of lignin and hemicellulose from crop straw[D]. Xianyang: Northwest Agriculture and Forestry University of Science and Technology, 2016.
|
[24] |
岳孔, 陆栋, 宋学松. 利用傅里叶变换红外光谱分析高温改性对杨木强度等级的影响[J]. 光谱学与光谱分析, 2023, 43(3): 848−853. doi: 10.3964/j.issn.1000-0593(2023)03-0848-06
Yue K, Lu D, Song X S. Influence of thermal modification on poplar strength class by Fourier infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 848−853. doi: 10.3964/j.issn.1000-0593(2023)03-0848-06
|
[25] |
Wang X J, Luo C M, Mu J, et al. Effects of aluminum chloride impregnating pretreatment on physical and mechanical properties of heat-treated poplar wood under mild temperature[J]. Forests, 2022, 13(8): 1170. doi: 10.3390/f13081170
|
[26] |
Gao Y, Li Y, Ren R, et al. Enhancing the mechanical properties and hydrophobicity of heat-treated wood by migrating and relocating sulfonated lignin[J]. Holzforschung, 2022, 76(7): 637−644. doi: 10.1515/hf-2021-0207
|
[27] |
吕建雄, 江京辉, 黄荣凤, 等. 木材高温热处理技术与应用[M]. 北京: 科学出版社, 2020.
Lü J X, Jiang J H, Huang R F, et al. Technology and application of high temperature heat treatment of wood[M]. Beijing: Science Press, 2020.
|
[28] |
张静. 热处理杉木的物理力学性能与热降解特性研究[D]. 北京: 北京林业大学, 2021.
Zhang J. Physical and mechanical properties and thermal degradation characteristics of heat-treated Chinese fir[D]. Beijing: Beijing Forestry University, 2019.
|
[29] |
Poletto M, Ornaghi H L, Zattera A J. Native cellulose: structure, characterization and thermal properties[J]. Materials, 2014, 7(9): 6105−6119. doi: 10.3390/ma7096105
|
[30] |
张晔. 无机盐催化半纤维素水解制备糠醛的研究[D]. 淮南: 安徽理工大学, 2014.
Zhang Y. Conversion of hemicellulose into furfural using inorganic salt catalysts[D]. Huainan: Anhui University of Science and Technology, 2014.
|
[31] |
李宇宇. 落叶松热解动力学分析误差研究[D]. 北京: 北京林业大学, 2012.
Li Y Y. Study on errors of larch wood pyrolysis kinetic analysis[D]. Beijing: Beijing Forestry University, 2012.
|
[32] |
怀超平, 刘芳, 董佩文, 等. 木材热重试验及动力学分析[J]. 消防科学与技术, 2020, 39(6): 757−760. doi: 10.3969/j.issn.1009-0029.2020.06.006
Huai C P, Liu F, Dong P W, et al. Thermogravimetric experiment and kinetic analysis of wood[J]. Fire Science and Technology, 2020, 39(6): 757−760. doi: 10.3969/j.issn.1009-0029.2020.06.006
|
[33] |
李丹, 苏振华, 曹春昱. 桉木热水预水解过程中木糖反应动力学的研究[J]. 中国造纸, 2019, 38(6): 14−19. doi: 10.11980/j.issn.0254-508X.2019.06.003
Li D, Su Z H, Cao C Y. Reaction kinetics of xylose from eucalyptus hot water prehydrolysis[J]. China Pulp & Paper, 2019, 38(6): 14−19. doi: 10.11980/j.issn.0254-508X.2019.06.003
|
[34] |
顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1−11.
Gu L B, Ding T, Jiang N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1−11.
|
[35] |
彭锋. 农林生物质半纤维素分离纯化、结构表征及化学改性的研究[D]. 广州: 华南理工大学, 2010.
Peng F. Isolation, fractionation, characterization and modification of hemicelluloses from agricultural and forestry biomass[D]. Guangzhou: South China University of Technology, 2010.
|
[1] | Liu Huilin, Zhou Lifeng, Guo Kai, Yu Hongshi, Hu Jiafu. Mating characteristics of Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2023, 45(6): 82-89. DOI: 10.12171/j.1000-1522.20210416 |
[2] | Luo Cuimei, Wang Xujie, Mu Jun, Qi Chusheng. Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose[J]. Journal of Beijing Forestry University, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426 |
[3] | Zhang Yizhuo, Hou Hongyi, Pan Shen. Modeling method for compressive elastic modulus of softwood based on fiber angle prediction[J]. Journal of Beijing Forestry University, 2018, 40(5): 103-109. DOI: 10.13332/j.1000-1522.20180058 |
[4] | YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111. |
[5] | WANG Xiao-ling, ZHAO Zhong, QUAN Jin-e. Effects of planting time on endogenous hormones and oxidase in tetraploid Robinia pseudoacacia softwood cuttings.[J]. Journal of Beijing Forestry University, 2011, 33(6): 102-106. |
[6] | DUO Hua-qiong, WANG Xi-ming, FAN Jun-xiong. Cross section size analysis of tracheids in Tsuga chinensis wood with Fourier transformation[J]. Journal of Beijing Forestry University, 2009, 31(5): 108-111. |
[7] | YIN Ya-fang, WANG Li-juan, JANG Xiao-mei.. Use of Pilodyn tester for estimating basic density in standing trees of hardwood plantation[J]. Journal of Beijing Forestry University, 2008, 30(4): 7-11. |
[8] | JIANG Jiali, LV Jian-xiong.. Dynamic viscoelastic properties of drying treated wood.[J]. Journal of Beijing Forestry University, 2008, 30(3): 96-100. |
[9] | YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118. |
[10] | LIN Feng, ZHAO Bo-guang. Effects of bacterium on the propagation of pine wood nematodes[J]. Journal of Beijing Forestry University, 2006, 28(4): 135-138. |
1. |
党英侨,殷晶晶,陈传佳,孙丽丽,刘鹏,曹传旺. 转舞毒蛾LdCYP6AN15v1基因果蝇品系对氯虫苯甲酰胺胁迫响应. 林业科学. 2017(06): 94-104 .
![]() |