Citation: | Luo Cuimei, Wang Xujie, Mu Jun, Qi Chusheng. Effects of exogenous acid catalysis on the thermal degradation law of wood hemicellulose[J]. Journal of Beijing Forestry University, 2022, 44(4): 147-156. DOI: 10.12171/j.1000-1522.20210426 |
[1] |
Rowell R M. Handbook of wood chemistry and wood composites [M]. Boca Raton: CRC Press, 2005.
|
[2] |
Sjöström E. Wood chemistry fundamentals and applications [M]. New York: Academic Press, 1981.
|
[3] |
顾百练, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1−11.
Gu B L, Ding T, Jiang N. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1−11.
|
[4] |
Yang H C, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86: 1781−1788. doi: 10.1016/j.fuel.2006.12.013
|
[5] |
齐文玉, 刘偲, 陈金明, 等. 氮气介质环境中热处理樟子松木材主要性能的变化[J]. 西北林学院学报, 2021, 36(5): 161−167.
Qi W Y, Liu C, Chen J M, et al. Effect of N2 heat treatment on main properties of Pinus sylvestris var. mongolica wood[J]. Journal of Northwest Forestry University, 2021, 36(5): 161−167.
|
[6] |
Salca E A, Hiziroglu S. Evaluation of hardness and surface quality of different wood species as function of heat treatment[J]. Materials & Design, 2014, 62: 416−423.
|
[7] |
Xue L, Zhao Z J, Zhang Y, et al. Analysis of gas chromatography-mass spectrometry coupled with dynamic headspace sampling on volatile organic compounds of heat-treated poplar at high temperatures[J]. BioResources, 2016, 11(2): 3550−3560.
|
[8] |
吴再兴, 陈玉和, 黄成建, 等. 热处理对木材力学性能的影响综述[J]. 世界林业研究, 2019, 32(1): 59−64.
Wu Z X, Chen Y H, Huang C J, et al. A review of effects of heat treatment on wood mechanical properties[J]. World Forestry Research, 2019, 32(1): 59−64.
|
[9] |
孔繁旭, 邹超峰, 王艳伟, 等. 热处理对木材化学组分及物理力学性能的影响[J]. 林业机械与木工设备, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002
Kong F X, Zou C F, Wang Y W, et al. Effect of heat treatment on chemical composition and physico-mechanical properties of wood[J]. Forestry Machinery & Woodworking Equipment, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002
|
[10] |
王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107−110.
Wang C G, Jiang Z H, Fei B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107−110.
|
[11] |
李贤军, 付峰, 蔡智勇, 等. 高温热处理对木材吸湿性和尺寸稳定性的影响[J]. 中南林业科技大学学报, 2010, 30(6): 92−96. doi: 10.3969/j.issn.1673-923X.2010.06.017
Li X J, Fu F, Cai Z Y, et al. The effect of high temperature thermal treatment on moisture absorption and dimension stability of wood[J]. Journal of Central South University of Forestry & Technology, 2010, 30(6): 92−96. doi: 10.3969/j.issn.1673-923X.2010.06.017
|
[12] |
蔡绍祥, 王新洲, 李延军. 高温水热处理对马尾松木材尺寸稳定性和材色的影响[J]. 西南林业大学学报, 2019, 39(1): 160−165.
Cai S X, Wang X Z, Li Y J. The size stability and color change of Pinus massoniana wood by high temperature hydrothermal treatment[J]. Journal of Southwest Forestry University, 2019, 39(1): 160−165.
|
[13] |
Hosseinpourpia R, Adamopoulos S, Mai C. Effects of acid pre-treatments on the swelling and vapor sorption of thermally modified Scots pine (Pinus sylvestris L.) wood[J]. BioResources, 2018, 13(1): 331−345.
|
[14] |
Himmel S, Mai C. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood[J]. Holzforschung, 2015, 69(5): 633−643. doi: 10.1515/hf-2014-0161
|
[15] |
Hosseinpourpia R, Adamopoulos S, Holstein N, et al. Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid[J]. Polymer Degradation and Stability, 2017, 138: 161−168. doi: 10.1016/j.polymdegradstab.2017.03.009
|
[16] |
孙珂, 漆楚生, 汪莉君, 等. 杉木纤维素的热稳定性及热分解动力学参数[J]. 林产工业, 2018, 45(4): 37−42.
Sun K, Qi C S, Wang L J, et al. Thermal stablity and decopposition kinetics parameters of Chinese fir cellulose[J]. China Forest Products Industry, 2018, 45(4): 37−42.
|
[17] |
Qi C S, Hou S Y, Lu J X, et al. Thermal characteristics of birch and its cellulose and hemicelluloses isolated by alkaline solution[J]. Holzforschung, 2020, 74(12): 1099−1112. doi: 10.1515/hf-2019-0285
|
[18] |
李赫龙. 作物秸秆木质素和半纤维素的分离纯化及结构表征[D]. 咸阳: 西北农林科技大学, 2016.
Li H L. Isolation and structure characterization of ligin and hemicellulose from crop straw[D]. Xianyang: Northwest Agriculture and Forestry University of Science and Technology, 2016.
|
[19] |
Akerholm M, Salmen L. Interactions between wood polymers studied by dynamic FT-IR spectroscopy[J]. Polymer, 2001(42): 963−969.
|
[20] |
储德淼. 基于阻燃/热处理联合改性杨木表面功能层构建与性能研究[D]. 北京: 北京林业大学, 2019.
Chu D M. Manufacturing and characterizing of the surface functional layer on poplar using combined treatment of fir retardancy and thermal modification[D]. Beijing: Beijing Forestry University, 2019.
|
[21] |
Huang X N, Kocaefe D G, Kocaefe Y, et al. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering[J]. Applied Surface Science, 2013, 264: 117−127. doi: 10.1016/j.apsusc.2012.09.137
|
[22] |
Buta J G, Zadrazil F, Galletti G C. FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations[J]. Journal of Agricultural and Food Chemistry, 1989, 37(5): 1382−1384.
|
[23] |
Rabemanolontsoa H, Saka S. Holocellulose determination in biomass[J]. Green Energy and Technology, 2012: 135−140.
|
[24] |
Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035
|
[25] |
Sugiyama J, Persson J, Chanzy H. Combined infrared and electron diffraction study of the polymorphism of native celluloses[J]. Macromolecules, 1991, 24: 2461−2466. doi: 10.1021/ma00009a050
|
[26] |
Li M Y, Cheng S C, Li D, et al. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy[J]. Chinese Chemical Letters, 2015, 26(2): 221−225. doi: 10.1016/j.cclet.2014.11.024
|
[27] |
Zabihi O, Ahmadi M, Yadav R, et al. Novel Phosphorous-based deep eutectic solvents for the production of recyclable macadamia nutshell-polymer biocomposites with improved mechanical and fire safety performances[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4463−4476.
|
[28] |
Ma Z Q, Chen D Y, Gu J, et al. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Conversion and Management, 2015, 89: 251−259. doi: 10.1016/j.enconman.2014.09.074
|
[29] |
吕建雄, 江京辉, 黄荣凤, 等. 木材高温热处理技术与应用[M]. 北京: 科学出版社, 2020.
Lü J X, Jiang J H, Huang R F, et al. Technology and application of wood high temperature heat treatment[M]. Beijing: Science Press, 2020.
|
[30] |
梁韬. 基于Py-GC/MS的半纤维素热裂解机理研究[D]. 杭州: 浙江大学, 2013.
Liang T. Mechanism research of hemicellulose pyrolvsis based on Py-GC/MS[D]. Hangzhou: Zhejiang University, 2013.
|
[31] |
Wang J W, Minami E, Kawamoto H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls[J]. Journal of Wood Science, 2020, 66(1): 1−10.
|
[32] |
Hajj R, Hage R E, Sonnier R, et al. Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy[J]. Reactive and Functional Polymers, 2020, 153: 1−13.
|
[33] |
Sonnier R, Otazaghine B, Virett A, et al. Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds[J]. European Polymer Journal, 2015, 68: 313−325. doi: 10.1016/j.eurpolymj.2015.05.005
|
[34] |
程士超. 热处理温度对花梨木化学组分及其结构的影响[D]. 北京: 北京林业大学, 2016.
Cheng S C. Effect of heat treatment temperature on chemical compositions and structure of Pterocarpus macarpus Kurz wood[D]. Beijing: Beijing Forestry University, 2016.
|
[35] |
Qi C S, Yadama V, Guo K Q, et al. Thermal stability evaluation of sweet sorghum fiber and degradation simulation during hot pressing of sweet sorghum-thermoplastic composite panels[J]. Industrial Crops and Products, 2015, 69: 335−343. doi: 10.1016/j.indcrop.2015.02.050
|
[36] |
Wang S R, Ru B, Lin H Z, et al. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods[J]. Fuel, 2015, 150: 243−251. doi: 10.1016/j.fuel.2015.02.045
|
[37] |
Wang S R, Ru B, Zhang L, et al. Structural characterization and pyrolysis behavior of cellulose and hemicellulose isolated from softwood Pinus armandii Franch[J]. Energy & Fuel, 2016, 30(7): 5721−5728.
|
[38] |
Lei Z H, Wang S D, Fu H C, et al. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia oleifera shell[J]. Bioresource Technology, 2019, 282: 228−235. doi: 10.1016/j.biortech.2019.02.131
|