• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118.
Citation: YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118.

Longitudinal MOE and hardness of different cell wall layers of softwood tracheids

More Information
  • Received Date: December 19, 2005
  • Available Online: May 14, 2024
  • In situ imaging nanoindentation was used to characterize the differences in longitudinal Modulus of Elasticity(MOE) and hardness of different cell wall layers of softwood tracheids.It was found that the deformation of cell wall was mainly plastic when tips were indented in longitudinal direction.The distribution of longitudinal MOE and hardness along cell wall thickness was uneven with much lower values at the interface between S3 layer and cell cavity as well as S1 layer and compound middle lamella(CML) compared with that measured in S2 layer.There also existed differences in MOE and hardness between S2 layers of adjacent tracheids.ANOVA indicated significant differences in MOE between secondary wall(SW) and CML,but no significant difference for hardness.Both MOE and hardness of mature wood trachedis were larger than that of juvenile wood,but in a different degree.The SW of mature wood tracheids displayed an MOE nearly 1.4 times of that of juvenile wood,but only 13% harder than juvenile wood.A positive linear correlation between MOE and hardness was also found both for SW and CML of tracheids.
  • Related Articles

    [1]Zhang Lingfeng, Liu Zhaogang, Dong Lingbo. Development stage division and stand structure characteristics of natural hard broadleaved forest in Maor Mountain, Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2025, 47(2): 10-22. DOI: 10.12171/j.1000-1522.20240169
    [2]Li Jingkui, Wang Yanan, Mu Hongbo, Qi Dawei. Preparation of nano ZnO/wood composite by magnetron sputtering and its physical property change[J]. Journal of Beijing Forestry University, 2019, 41(1): 119-125. DOI: 10.13332/j.1000-1522.20180303
    [3]Liu Dandan, Guan Huiyuan, Huang Qiongtao. Effects of thermal treatment on deformation fixation and properties of surface densified wood[J]. Journal of Beijing Forestry University, 2018, 40(7): 121-128. DOI: 10.13332/j.1000-1522.20180175
    [4]ZHANG Yi-zhuo, SU Yao-wen, LI Chao, MEN Hong-sheng.. Analysis of MOR and MOE prediction model of Quercus mongolica wood by near infrared spectroscopy.[J]. Journal of Beijing Forestry University, 2016, 38(8): 99-105. DOI: 10.13332/j.1000-1522.20150505
    [5]ZHANG Shu-qin, YU Yan, FEI Ben-hua, WANG Han-kun. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126-130.
    [6]WANG Chuan-gui, JIANG Ze-hui, FEI Ben-hua, YU Yan, ZHANG Shuang-yan. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110.
    [7]ZHANG Hou-jiang, GUO Zhi-ren, John F Hunt, FU Feng. Measuring modulus of elasticity for thin wood composites using a dynamic method[J]. Journal of Beijing Forestry University, 2010, 32(2): 149-152.
    [8]ZHANG Hou-jiang, WANG Chao-zhi, SU Juan. Influences of support styles on MOE determination of lumber with transverse vibration.[J]. Journal of Beijing Forestry University, 2009, 31(3): 120-123.
    [9]YU Yang-lun, YU Wen-ji, ZHANG Fang-wen.. Prediction of modules of elastic of thick plywood.[J]. Journal of Beijing Forestry University, 2009, 31(1): 130-133.
    [10]ZHANG Hou-jiang, SHEN Shi-jie, CUI Ying-ying, MIAO Yi, WANG Ying-kun. Measuring elastic modulus of wood using vibration method[J]. Journal of Beijing Forestry University, 2005, 27(6): 91-94.
  • Cited by

    Periodical cited type(17)

    1. 汪佑宏,杨明亮,薛夏,余林鹏,江泽慧,田根林. 离子减薄技术在藤纤维力学性质测试上的应用. 安徽农业大学学报. 2024(02): 353-358 .
    2. 卢芸,梁振烜,付宗营,张世锋. 木材细胞壁纳米技术研究进展与展望. 林业工程学报. 2022(05): 1-11 .
    3. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    4. 罗树丽,弋晓康,张有强,周岭. 基于纳米压痕技术的棉秆微观力学性能分析. 塔里木大学学报. 2020(03): 99-104 .
    5. 王献轲,方长华,刘嵘,张淑琴,陈红,费本华. 竹材不同尺度单元纵向拉伸性能研究进展. 竹子学报. 2020(04): 14-24 .
    6. 孙海燕,苏明垒,吕建雄,赵荣军,任海青,王玉荣. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展. 西北农林科技大学学报(自然科学版). 2019(05): 50-58 .
    7. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    8. 胡拉,徐慧兰,谭健晖,杨章旗. 马尾松木材材性特点及加工利用研究. 世界林业研究. 2018(01): 40-45 .
    9. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    10. 伍艳梅,黄荣凤,高志强,王艳伟,李任. 木材横纹压缩应力-应变关系及其影响因素研究进展. 林产工业. 2018(11): 11-16 .
    11. 林兰英,秦理哲,傅峰. 微观力学表征技术的发展及其在木材科学领域中的应用. 林业科学. 2015(02): 121-128 .
    12. 何盛,傅峰,林兰英,周永东. 微波处理技术在木材功能化改性研究中的应用. 世界林业研究. 2014(01): 62-67 .
    13. 王传贵,江泽慧,费本华,余雁,张双燕. 化学成分对木材细胞壁纵向弹性模量和硬度的影响. 北京林业大学学报. 2012(03): 107-110 . 本站查看
    14. 张淑琴,余雁,费本华,王汉坤. 杉木木材管胞纵向弹性模量的研究. 北京林业大学学报. 2012(06): 126-130 . 本站查看
    15. 王戈,陈红,余雁,程海涛,田根林,谌晓梦. 竹纤维细胞水平的物理力学性能精细表征技术. 北京林业大学学报. 2011(04): 143-148 . 本站查看
    16. 程献宝,王小青,余雁,田根林,上官蔚蔚,赵荣军. 纳米压痕技术在木质材料细胞壁力学研究中的应用. 世界林业研究. 2011(05): 40-46 .
    17. 费本华,余雁,黄安民,邢新婷. 木材细胞壁力学研究进展. 生命科学. 2010(11): 1173-1176 .

    Other cited types(29)

Catalog

    Article views (3338) PDF downloads (75) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return