• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhan Siying, Liu Pengju, Li Haikui, Zhang Cong, Liu Qi. Threshold optimization for forest soil organic matter prediction model: a case study of Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2025, 47(2): 32-39. DOI: 10.12171/j.1000-1522.20240314
Citation: Zhan Siying, Liu Pengju, Li Haikui, Zhang Cong, Liu Qi. Threshold optimization for forest soil organic matter prediction model: a case study of Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2025, 47(2): 32-39. DOI: 10.12171/j.1000-1522.20240314

Threshold optimization for forest soil organic matter prediction model: a case study of Guangdong Province of southern China

More Information
  • Received Date: September 19, 2024
  • Revised Date: November 24, 2024
  • Available Online: February 16, 2025
  • Objective 

    This paper takes Guangdong Province of southern China as an example, and explores the applicability of optimized geographical similarity model in the prediction of forest soil organic matter at provincial scale.

    Method 

    Based on the data of 1 175 sample points from soil fertility testing system in Guangdong Province, we selected soil factors, stand factors and climate factors as environmental covariates to improve the “individual point representativeness digital soil mapping (iPSM)”. This article evaluates the applicability of the model in predicting forest soil organic matter at the provincial level using three indicators: coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE), and compares its predictive performance with that of random forest prediction model.

    Result 

    (1) The prediction accuracy of optimized iPSM was better than that of random forest prediction model, and the coefficient of determination of model can reach 0.7419. (2) The total nitrogen content and available potassium content in soil factors were the most influential environmental covariates in prediction model of forest soil organic matter in Guangdong Province.

    Conclusion 

    Compared with iPSM method, the optimized iPSM has improved the accuracy of forest soil organic matter prediction in Guangdong Province. The model has good applicability at the provincial level and can provide a new method for predicting soil organic matter at the provincial level.

  • [1]
    Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2000, 6(3): 317−327. doi: 10.1046/j.1365-2486.2000.00308.x
    [2]
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156−159. doi: 10.1038/298156a0
    [3]
    孙国栋. 标准物质和森林表层土壤有机质分子水平特征及其影响因素[D]. 兰州: 西北师范大学, 2022.

    Sun G D. Molecular-level characteristics of organic matter in standard reference materials and forest surface soils and the influencing factors [D]. Lanzhou: Northwest Normal University, 2022.
    [4]
    杨承栋. 我国人工林土壤有机质的量和质下降是制约林木生长的关键因子[J]. 林业科学, 2016, 52(12): 1−12. doi: 10.11707/j.1001-7488.20161201

    Yang C D. Decline of quantity and quality of soil organic matter is the key factor restricting the growth of plantation in China[J]. Scientia Silvae Sinicae, 2016, 52(12): 1−12. doi: 10.11707/j.1001-7488.20161201
    [5]
    Podwojewski P, Poulenard J, Nguyet L M, et al. Climate and vegetation determine soil organic matter status in an alpine inner-tropical soil catena in the Fansipan Mountain, Vietnam[J]. Catena, 2011, 87(2): 226−239. doi: 10.1016/j.catena.2011.06.002
    [6]
    Marco A J G, Ana M Á, Pilar C, et al. Climate variability in Mediterranean ecosystems is reflected by soil organic matter pyrolytic fingerprint[J]. Geoderma, 2020, 374: 114443.
    [7]
    McBratney A B, Mendonça S M L, Minasny B. On digital soil mapping[J]. Geoderma, 2003, 117: 3−52. doi: 10.1016/S0016-7061(03)00223-4
    [8]
    李志斌. 基于地统计学方法和Scorpan模型的土壤有机质空间模拟研究[D]. 北京: 中国农业科学院, 2010.

    Li Z B. Soil organic matter prediction based on geostastistics and Scorpan model: a case study in Shulan of Jilin Province [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
    [9]
    Liu Q, He L. Digital mapping of soil organic carbon density using newly developed bare soil spectral indices and deep neural network[J]. Catena, 2022, 219: 106603. doi: 10.1016/j.catena.2022.106603
    [10]
    Meng X , Bao Y , Zhang X , et al. Prediction of soil organic matter using different soil classification hierarchical level stratification strategies and spectral characteristic parameters[J]. Geoderma, 2022, 411: 115696.
    [11]
    Hendriks C, Jetse J, Álvarez-Martínez J, et al. Introducing a mechanistic model in digital soil mapping to predict soil organic matter stocks in the Cantabrian region (Spain)[J]. European Journal of Soil Science, 2021, 72(2): 704−719. doi: 10.1111/ejss.13011
    [12]
    Song Y Q, Sun N, Zhang L. Using multispectral variables to estimate heavy metals content in agricultural soils: a case of suburban area in Tianjin, China [J]. Geoderma Regional, 2022, 29: e00540.
    [13]
    Upek B, Launiainen S, Peltoniemi M, et al. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference[J]. European Journal of Soil Science, 2019, 70(4): 847−858.
    [14]
    朱阿兴, 李宝林, 杨琳, 等. 基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J]. 土壤学报, 2005(5): 142−149. doi: 10.3321/j.issn:0564-3929.2005.05.019

    Zhu A X, Li B L, Yang L, et al. Predictive soil mapping based on a GIS, expert knowledge, and fuzzy logic framework and its application prospects in China[J]. Acta Pedologica Sinica, 2005(5): 142−149. doi: 10.3321/j.issn:0564-3929.2005.05.019
    [15]
    Zhu A X, Liu J, Du F, et al. Predictive soil mapping with limited sample data[J]. European Journal of Soil Science, 2015, 66(3): 535−547. doi: 10.1111/ejss.12244
    [16]
    柯善新, 胡觉, 黄湘南. 广东省“十四五”期间森林资源保护与发展思考[J]. 中南林业调查规划, 2019, 38(3): 5−10, 24.

    Ke S X, Hu J, Huang X N. Thought on protection and development of forest resources in Guangdong Province in the 14th Five-Year Plan period[J]. Central South Forest Inventory and Planning, 2019, 38(3): 5−10, 24.
    [17]
    苏省. 广东省森林生态状况动态分析及质量评价[J]. 林业科技开发, 2014, 28(1): 1−6.

    Su X. Dynamic analysis and quality evaluation of forest ecological status in Guangdong Province[J]. Forestry Science and Technology, 2014, 28(1): 1−6.
    [18]
    Madlene N, Kay S, Andri B, et al. Evaluation of digital soil mapping approaches with large sets of environmental covariates[J]. Soil, 2018(4): 1−22.
    [19]
    颜祥照, 姚艳敏, 张霄羽. 土壤有机质遥感制图研究进展与展望[J]. 中国农业信息, 2019, 31(3): 13-26.

    Yan X Z, Yao Y M, Zhang X Y. Progress and prospect of remote sensing mapping of soil organic matter[J]. China Agricutural Informatics, 2019, 31(3): 14.
    [20]
    郑镜明, 张红爱, 梁素莲. 广东省林地土壤监测研究报告[J]. 广东林业科技, 2009, 25(3): 29−34.

    Zheng J M, Zhang H A, Liang S L. Report on forest soil monitoring in Guangdong Province[J]. Guangdong Forestry Science and Technology, 2009, 25(3): 29−34.
    [21]
    刘晓彤, 黄金金, 张逸如, 等. 基于广义可加模型的广东省森林土壤有机质影响因子[J]. 生态学杂志, 2021, 41(11): 2278−2288.

    Liu X T, Huang J J, Zhang Y R, et al. Analysis of influencing factors on forest soil organic matter in Guangdong Province based on GAM model[J]. Chinese Journal of Ecology, 2021, 41( 11) : 2278−2288.
    [22]
    Fan N Q, Zhao F H, Zhu L J, et al. Digital soil mapping with adaptive consideration of the applicability of environmental covariates over large areas [J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102986.
    [23]
    Gower J C. A general coefficient of similarity and some of its properties[J]. Biometrics, 1971, 27: 857−871. doi: 10.2307/2528823
    [24]
    Bélisle C J. Convergence theorems for a class of simulated annealing algorithms on R [J]. Journal of Applied Probability, 1992, 29: 885−895.
    [25]
    夏晨真, 姜艳艳, 张星宇, 等. 基于无人机高光谱影像的黑土区玉米农田土壤有机质估算[J]. 光谱学与光谱分析, 2023, 43(8): 2617−2626.

    Xia C Z, Jiang Y Y, Zhang X Y, et al. Estimation of soil organic matter in maize field of black soil area based on UAV hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2023, 43(8): 2617−2626.
    [26]
    姜赛平, 张怀志, 张认连, 等. 基于三种空间预测模型的海南岛土壤有机质空间分布研究[J]. 土壤学报, 2018, 55(4): 1007−1017. doi: 10.11766/trxb201710240410

    Jiang S P, Zhang H Z. Zhang R L, et al. Research on spatial distribution of soil organic matter in HainanIisland based on three spatial prediction models[J]. Acta Pedologica Sinica, 2018, 55(4): 1007−1017. doi: 10.11766/trxb201710240410
    [27]
    陈桂良, 刘忠妹, 许木果, 等. 云南山地胶园土壤有机质高光谱估算[J]. 中国农学通报, 2023, 39(13): 87−94. doi: 10.11924/j.issn.1000-6850.casb2022-0997

    Chen G L, Liu Z M, Xu M G, et al. Hyper-spectral estimation for soil organic matter in Yunnan mountainous rubber plantations[J]. Chinese Agricultural Science Bulletin, 2023, 39(13): 87−94. doi: 10.11924/j.issn.1000-6850.casb2022-0997
    [28]
    沈佳丽, 陈颂超, 胡碧峰, 等. 基于机器学习的江汉平原土壤有机碳预测及制图[J]. 农业资源与环境学报, 2023, 40(3): 644−650.

    Shen J L, Chen S C, Hu B F, et al. Prediction and mapping soil organic carbon in Jianghan Plain by machine learning[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 644−650.
  • Related Articles

    [1]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [2]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [3]Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183
    [4]Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096
    [5]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [6]Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. DOI: 10.13332/j.1000-1522.20190026
    [7]ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.
    [8]WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74.
    [9]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [10]YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107.
  • Cited by

    Periodical cited type(7)

    1. 张高玲,谢红霞,盛浩,周清,段良霞,吴燕语. 亚热带山区红壤可蚀性对土地利用变化的响应. 长江科学院院报. 2022(02): 63-69 .
    2. 孙文泰,马明,牛军强,尹晓宁,董铁,刘兴禄. 陇东雨养苹果覆膜对土壤团聚体结构稳定性与细根分布的影响. 生态学报. 2022(04): 1582-1593 .
    3. 崔芯蕊,张嘉良,王云琦,王玉杰,王鑫皓. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报. 2021(04): 275-281 .
    4. 赵庆营. 河道格宾生态护岸结构选择方案设计与质量控制研究. 地下水. 2021(05): 246-248 .
    5. 蔡保国. 北方地区格宾生态护岸结构形式选择及质量控制. 水利规划与设计. 2020(01): 113-116 .
    6. 吴军虎,刘侠,邵凡凡,李玉晨,王泽祥. 天然沸石对土壤水分运动特性及水稳性团聚体的影响. 灌溉排水学报. 2020(04): 34-41 .
    7. 白录顺,范茂攀,王自林,王婷,邓超,李永梅. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究. 2019(01): 124-129 .

    Other cited types(7)

Catalog

    Article views (51) PDF downloads (27) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return