• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHOU Zhang-yi, LIN Hua-zhong, FANG Lu-ming, LIN Sheng-biao, CHEN Liang, HE Zun-wei. Test of sound frequency treatment in timber and the hypothesis of trees’ sound principle.[J]. Journal of Beijing Forestry University, 2015, 37(10): 86-95. DOI: 10.13332/j.1000-1522.20150099
Citation: ZHOU Zhang-yi, LIN Hua-zhong, FANG Lu-ming, LIN Sheng-biao, CHEN Liang, HE Zun-wei. Test of sound frequency treatment in timber and the hypothesis of trees’ sound principle.[J]. Journal of Beijing Forestry University, 2015, 37(10): 86-95. DOI: 10.13332/j.1000-1522.20150099

Test of sound frequency treatment in timber and the hypothesis of trees’ sound principle.

More Information
  • Received Date: March 29, 2015
  • Published Date: October 30, 2015
  • To explore application of acoustic wave technology in forestry production, we used acoustic frequency generator of plant to carry out a number of nursery and woodland tests on different plant species during the year 2013 and 2014. The results showed that the acoustic wave can promote the growth of trees. It increases the height of Pinus tabulaeformis and Platycladus orientalis seedlings by 32.4% and 49.7%, respectively, and improves the volume growth of Cunninghamia lanceolata forest by 2.16 times, compared to the control. It can also promote the breeding of Rhizobium legume species and the amount of nodule volume of Robinia pseudoacacia seedlings is 7.1 times that of the control group. Besides, sonic wave can also enhance vigor, improve the capacity of pest-resistance of trees and increase the effects of chemical control. The results have shown that there is a wide range of promotion prospects about sonic technology in the forestry production. Nevertheless, questions such as how the trees sound, and why the sonic wave can enhance the photosynthetic rate of trees and promote the growth of trees still remain unclear. We come up with a hypothesis to explain these issues. Based on the sound principles, the sound of trees comes from the vibration of water passing through the xylem vessels and tracheids. Transpirational pull is not only the driving force of water flowing of trees, but also the main driver of vocalization of trees.
  • [1]
    侯天侦,李明保,腾光辉,等.植物声频控制技术及应用进展[J].中国农业大学学报,2010,15(1):106-110.
    [1]
    HOU T Z, LI B M, TENG G H, et al. Research and application progress of plant acoustic frequency technology[J]. Journal of China Agricultural University,2010, 15(1): 106-110.
    [2]
    周章义.一项值得研究的树势探测技术:电容法[J].山东林业科技,2000(6):38-42.
    [2]
    ZHOU Z Y. A method of measuring tree vigor worthy of future study:capacitance method[J]. Shandong Forestry Science and Technology, 2000(6):38-42.
    [3]
    FAN R, ZHOU Q, ZHAO D M. Effect on changes of chlorophyll fluorescence incucumber by application of sound frequency control technology[J].Acta Agriculturae Boreali-occidentalis Sinica,2010, 19(1): 194-197.
    [3]
    樊荣,周清,赵冬梅.植物声频控制技术对黄瓜叶绿素荧光特性的影响[J].西北农业学报,2010,19(1):194-197.
    [4]
    ZHOU Q, QU Y H, LI B M, et al. Effects of sound frequency treatment on plant characters and chlorophyll fluorescence of the strawberry leaf[J]. Journal of China Agricultural University,2010, 15(1): 111-115.
    [4]
    周清,曲英华,李保明,等.声频处理对草莓植株性状及叶绿素荧光特性的影响[J].中国农业大学学报,2010,15(1):111-115.
    [5]
    李涛,侯月霞,蔡国友,等.流式细胞术分析强声波对植物细胞周期的影响[J].生物物理学报,2001,17(1):195-198.
    [5]
    LI T, HOU Y X, CAI G Y, et al.Analysis of the effect of strong sound wave on plant cells cycles using flow cytometry [J]. Acta Biophysica Sinica, 2001,17(1):195-198.
    [6]
    WANG S S, GAO R F, WU G M. Plant physiology[M]. 2nd ed. Beijing: China Forestry Publishing House, 1991: 192-201, 281-282.
    [6]
    JIA Y, WANG B C, WANG X J,et al. Effect of sound wave on the metabolism of chrysanthemum roots[J]. Colloids and Surfaces B: Biointerfaces, 2003, 29(2): 115-118.
    [7]
    王沙生,高荣孚,吴贯明.植物生理学[M]. 2版.北京:中国林业出版社,1991:192-201,281-282.
    [7]
    ZHOU Z Y.Advance in the study of suppressing pine caterpillars through “forest enclosing and tending”[J].Forest Research, 1993,6(Special):68-74.
    [8]
    周章义.封山育林控制松毛虫灾害研究慨述[J].林业科学研究,1993,6(专刊):68-74.
    [8]
    WEI J M, LI B, WANG B C, et al.Effect of sound wave stimulation on peroxidase isozyme gene expression in Dendobium candidum [J]. Applied Acoustics, 2008,27(6):462-467.
    [9]
    魏进民,李标,王伯初,等. 声波刺激对铁皮石斛过氧化酶同工酶基因表达的影响[J].应用声学,2008,27(6):462-467.
    [9]
    WANG B C, ZHANG X G, HUANG W Z, et al. Physiological effect of spatial sound field on rice sheath blight disease [J]. Progress in Natural Sciences, 2009,19(10):1068-1073.
    [10]
    王伯初,张小刚,黄文章,等.空间声场对水稻纹枯病的生理效应[J].自然科学进展,2009,19(10):1068-1073.
    [10]
    HAN S F, LIN S Y. Legmina tree species and rhizobium [M]. Beijing: China Forestry Publishing House, 2013:3-23.
    [11]
    YANG X C, WANG B C, YE M. Effects of different sound intensities on root development of Actinidia chinensis plantlet[J].Chinese Journal of Applied and Environmental Biology, 2004,10(3):274-276.
    [11]
    韩素芬,林树燕. 豆目树种与根瘤菌[M].北京:中国林业出版社,2013:3-23.
    [12]
    阳小成,王伯初,叶梅. 不同强度的声波对猕猴桃试管苗根系发育的影响[J].应用与环境生物学报,2004,10(3):274-276.
    [12]
    YANG X C, DING J P, WANG B C.Effects of different sound frequency on roots development of Actinidia chinensis plantlet [J]. Journal of Chongqing University:Natural Science Edition, 2008, 30(11): 72-74.
    [13]
    HOU T Z, LI B M, TENG G H, et al. Application of frequency technology to protected vegetable production[J]. Transactions of the CSAE,2009, 25(2): 156-160.
    [13]
    阳小成, 丁剑平, 王伯初. 不同频率的声波刺激对猕猴桃组培苗根系发育的影响[J]. 重庆大学学报: 自然科学版, 2008, 30(11): 72-74.
    [14]
    QI L R, TENG G H, HOU T Z, et al. Method and experiment of spontaneous acoustic frequency measurement on cucumber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Suppl.):263-265.
    [14]
    HOU T Z, LUAN J Y, WANG J Y, et al. Experimental evidence of a plant meridian system Ⅲ: the sound characteristics of Phylodendron (Alocasia) and effects of acupuncture on those properties[J]. The American Journal of Chinese Medicine, 1994, 22(3-4): 205-214.
    [15]
    SUN K L, XI B S, CAI G Y. The effects of alternative stress on the thermodymical properties of cultured tobacco cells[J]. Acta Biophysica Sinica, 1999, 15(3): 578-583.
    [15]
    侯天侦,李保明,腾光辉,等.植物声频控制技术在设施蔬菜生长中的应用[J].农业工程学报,2009,25(2):156-160.
    [16]
    祁丽荣, 滕光辉, 侯天侦, 等. 黄瓜幼苗自发声频率测定方法与试验[J]. 农业机械学报, 2010, 41(增刊):263-265.
    [16]
    YANG X C, WANG B C, DUAN C R, et al. Effects of sound stimulation on ATP content of Actinidia chinensis callus[J]. China Biotechnology, 2003, 23(5): 95-97.
    [17]
    MENG Q W, ZHOU Q, ZHENG S J, et al. Effects of plant acoustic frequency technology on the growth traits, chlorophyll content and endogenous hormones of Lycopersicon esculentum[J]. Hubei Agricultural Sciences, 2012,51(8):1591-1595.
    [17]
    孙克利,席葆树,蔡国友,等. 交变应力作用下烟草细胞热力学相行为的研究[J].生物物理学报,1999,15(3):579-583.
    [18]
    MENG Q W, ZHOU Q, GAO Y, et al.Effects of acoustic frequency treatment on photosynthetic and chlorophyll fluorescence characters of tomato[J].Acta Agriculturae Jiangxi, 2012 (12): 57-59.
    [18]
    阳小成, 王伯初, 段传人, 等. 声波刺激对猕猴桃愈伤组织 ATP 含量的影响[J]. 中国生物工程杂志, 2003, 23(5): 95-97.
    [19]
    孟庆午,周清,郑劭婧,等.植物声频控制技术对番茄生长特性、叶绿素及内源激素影响的研究[J].湖北农业科学,2012,51(8):1591-1595.
    [19]
    BAI S L, TIAN G H, HAO S Y, et al. The plant voice the control technique[J]. Acta Agriculturae Boreali-Sinica, 2006,21(Suppl.3):86-88.
    [20]
    孟庆午,周清,高杨,等.声频处理对番茄光合荧光特性的影响[J].江西农业学报,2011,23(12):57-59.
    [21]
    白生龙,田光华,郝水源,等.植物声频控制技术在玉米、向日葵上应用初探[J].华北农学报,2006,21(增刊3):86-88.
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (1835) PDF downloads (28) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return