Advanced search
    MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139
    Citation: MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139

    Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest

    More Information
    • Received Date: May 05, 2015
    • Published Date: March 30, 2016
    • A two-year field experiment was conducted in a typical broadleaf-Korean pine mixed forest in Xiaoxing'an Mountains, northeastern China, to explore the short-term effects of nitrogen (N) addition on litter decomposition and nutrient dynamics of Pinus koraiensis, Betula costata, Fraxinus mandshurica and the mixture of above species, using a litterbag method. Four levels of N addition were control (N0, 0 kg/(ha·a), low N (N1, 30 kg/(ha·a), medium N (N2, 60 kg/(ha·a) and high N (N3, 120 kg/(ha·a). N addition accelerated the decomposition rate of mixed leaf litter significantly (P0.05). The decomposition remaining rate of leaf litter had a significantly negative correlation with N concentration of substrate and a significantly positive correlation with C concentration and C/N ratio of the substrate. For all four leaf litter types, N addition increased the N concentration, and the interaction between time and N treatments influenced significantly phosphorus (P) concentration. N addition promoted N and P release of F. mandshurica leaf litter, but inhibited the release of the other three leaf litter types. N3 treatment inhibited carbon (C) release in P. koraiensis leaf litter and accelerated that in F. mandshurica leaf litter, while N1 treatment accelerated C release in F. mandshurica and mixed leaf litter. We suggest that N addition affects nutrient release patterns of leaf litter and has a significant influence in regulating carbon and nutrient cycling in forest ecosystem.
    • [1]
      GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70: 153-226.
      [1]
      MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecologica Sinica, 2004, 24(7): 1413-1420.
      [2]
      LIU Y, WU Y X, HAN S J, et al. Litterfall decomposition in four forest types in Changbai Mountains of China [J]. Chinese Journal of Ecology, 2009, 28(3): 400-404.
      [2]
      FREY S D, OLLINGER S, NADELHOFFER K J, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014, 121: 305-316.
      [3]
      CHEN J L, JIN G Z, ZHAO F X. Litter decomposition and nutrient dynamics at different succession stages of typical mixed broadleaved Korean pine forest in Xiaoxing'an Mountains, China [J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2209-2216.
      [3]
      HÖGBERG P. Environmental science: nitrogen impacts on forest carbon [J]. Nature, 2007, 447: 781-782.
      [4]
      CHAPIN F S, ZAVALETA E S, EVINER V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242.
      [4]
      GUO R H. Effect of nitrogen addition, elevated temperature and changed precipitation on main tree species leaf litter decomposition in broad-leaved Korean pine mixed forest [D]. Shenyang: Graduate University of Chinese Academy of Science, 2012.
      [5]
      TU L H, HU H L, HU T X, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China[J]. Chinese Journal of Plant Ecology, 2012, 36(2): 99-108.
      [5]
      HOFMANN A, HEIM A, GIOACCHINI P, et al. Mineral fertilization did not affect decay of old lignin and SOC in a C-13-labeled arable soil over 36 years [J]. Biogeosciences, 2009, 6: 1139-1148.
      [6]
      OLSON J S. Energy storage and the balance of producers and decomposition in ecological systems [J]. Ecology, 1963, 44: 322-331.
      [7]
      PANDEY R R, SHARMA G, TRIPATHI S K, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India [J]. Forest Ecology and Management, 2007, 240: 96-104.
      [8]
      SAYER E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems [J]. Biological Reviews, 2006, 81: 1-31.
      [9]
      BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews, 1997, 5: 1-25.
      [10]
      HOBBIE S E. Nitrogen effects on decomposition: a five year experiment in eight temperate sites [J]. Ecology, 2008, 89: 2633-2644.
      [11]
      POWERS J S, SALUTE S. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation [J]. Plant and Soil, 2011, 346: 245-257.
      [12]
      KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis [J]. Ecology, 2005, 86: 3252-3257.
      [13]
      HINES J, REYES M, MOZDER T J, et al. Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration [J]. Global Change Biology, 2014, 20: 3780-3789.
      [14]
      JIANG X, CAO L, ZHANG R, et al. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi [J]. Applied Soil Ecology, 2014, 80: 108-115.
      [15]
      BERG B. Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands [J]. Canadian Journal of Forest Research, 2000, 30(1): 122-135.
      [16]
      VORARˇŠKOVÁ J, DOBIÁŠOVÁ P, ŠNAJDR J, et al. Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare [J]. Fungal Ecology, 2011, 4(6): 417-426.
      [17]
      AMEND A S, MATULICH K L, MARTINY J B H. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities[J]. Frontiers in Microbiology, 2015, 6: 109.
      [18]
      TRINDER C J, JOHNSON D, ARTZ R R E. Litter type, but not plant cover, regulates initial litter decomposition and fungal community structure in a recolonising cutover peatland [J]. Soil Biology Biochemistry, 2009, 41: 651-655.
      [19]
      SJÖBER G, KNICKER H, NILSSON S I, et al. Impact of long-term N fertilization on the structural composition of spruce litter and mor humus [J]. Soil Biology Biochemistry, 2004, 36: 609-618.
      [20]
      莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7): 1413-1420.
      [21]
      LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems [J]. Scientific Reports, 2015, 5: 7952.
      [22]
      VIVANCO L, AUSTIN A T. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina [J]. Global Change Biology, 2011, 17: 1963-1974.
      [23]
      CORNELL S E, JICKELS T D, CAPE J N, et al. Organic nitrogen deposition on land and coastal environments: a review of methods and data [J]. Atmospheric Environment, 2003, 37: 2173-2191.
      [24]
      L>Ü C, TIAN H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data [J]. Journal of Geophysical Research, 2007, 112: D22S05. (2007-08-11)[2014-12-20]. http:∥onlinelibrary.wiley.com/ doi: 10.1029/2006JD007990.
      [25]
      EMMETT B A, BOXMAN A W, BREDEMEIER M, et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the N ITREX ecosystem-scale experiments[J]. Ecosystems, 1998, 1: 352-360.
      [26]
      JIN G, ZHAO F, LIU L, et al. The production and spatial heterogeneity of litterfall in the mixed broadleaved-Korean pine forest of Xiaoxing'an mountains, China [J]. Journal of Korean Forest Society, 2008, 97(2): 165-170.
      [27]
      LIU P, HUANG J H, SUN J O. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem [J]. Oecologia, 2010, 162:771-780.
      [28]
      KNOPS J M H, NAEEM S, REICH P B. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition [J]. Global Change Biology, 2007, 13: 1960-1971.
      [29]
      ZHANG P, TIANA X, HE X, et al. Effect of litter quality on its decomposition in broadleaf and coniferous forest [J]. European Journal of Soil Biology, 2008, 44: 392-399.
      [30]
      ABER J D, MELILLO J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany, 1982, 60: 2263-2269.
      [31]
      O'CONNELL A M, MENDHAM D S. Impact of N and P fertilizer application on nutrient cycling in jarrah (Eucalyptus marginata) forests of south western Australia [J]. Biology and Fertility of Soils, 2004, 40: 136-143.
      [32]
      刘颖, 武耀祥, 韩士杰, 等. 长白山四种森林类型凋落物分解动态[J]. 生态学杂志, 2009, 28(3): 400-404.
      [33]
      陈金玲, 金光泽, 赵凤霞.小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2209-2216.
      [34]
      郭瑞红. 施氮、增温和降水变化对阔叶红松林主要树种叶凋落物分解的影响[D]. 沈阳:中国科学院研究生院, 2012.
      [35]
      BARBHUIYA A R, ARUNACHALAM A, NATH P C, et al. Leaf litter decomposition of dominant tree species of Namdapha National Park, Arunachal Pradesh, northeast India [J]. Journal of Forest Research, 2008, 13: 25-34.
      [36]
      涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2): 99-108.
      [37]
      GUO L B, SIMS R E H. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests [J]. Agriculture, Ecosystems and Environment, 1999, 75: 133-140.
      [38]
      NADELHOFFER K J, COLMAN B P, CURRIE W S, et al. Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA) [J]. Forest Ecology and Management, 2004, 196: 89-107.
      [39]
      MICKS P, DOWNS M R, MAGILL A H, et al. Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation [J]. Forest Ecology and Management, 2004, 196: 71-87.
    • Related Articles

      [1]Yang Qinglei, He Huaijiang, Wang Juan, Cheng Yanxia, Zhang Chunyu. The impact of thinning intensity on carbon storage in the mixed coniferous and broad-leaved forest ecosystem in Northeast China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240032
      [2]Sun Ziqi, Mu Changcheng, Wang Ting, Li Meilin, Wang Wenjing. Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185
      [3]Lu Yi, Mu Changcheng, Gao Xu, Liang Daosheng. Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 16-27. DOI: 10.12171/j.1000-1522.20220294
      [4]Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
      [5]Yan Su, Mu Changcheng, Wang Bowei, Wang Biao. Carbon storage of natural broadleaved forested marsh wetland ecosystem in temperate Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(8): 1-11. DOI: 10.13332/j.1000-1522.20180005
      [6]LIU Yan-hui, DING Fang-jun, CUI Ying-chun, XIE Tao, MA Heng-fa, ZHAO Wen-jun. Effects of tending on carbon storage in the ecosystems of young Chinese fir plantations at the middle region of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 27-33. DOI: 10.13332/j.1000-1522.20160021
      [7]SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
      [8]LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. DOI: 10.13332/j.1000-1522.20150067
      [9]ZHANG Yi, MU Chang-cheng, ZHENG Tong, LI Na-na. Ecosystem carbon storage of natural secondary birch forests in Xiaoxing’an Mountains of China[J]. Journal of Beijing Forestry University, 2015, 37(4): 38-47. DOI: DOI:10.13332/j.1000-1522.20140449
      [10]CUI Wei, MU Chang-cheng, LU Hui-cui, BAO Xu, WANG Biao. Effects of draining for forestation on carbon storage of wetland ecosystem in Daxing'an Mountains of northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(5): 28-36.
    • Cited by

      Periodical cited type(1)

      1. 李东来,张文华,张宏斌,陈淑鑫. 产品喷涂装置Fluent仿真内部流场数值分析. 现代制造技术与装备. 2022(07): 50-53 .

      Other cited types(0)

    Catalog

      Article views (1535) PDF downloads (28) Cited by(1)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return