• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HAN Li-liang, SONG Gui-long.. Relationship between root mechanical characteristics and cell wall components of woody plant species.[J]. Journal of Beijing Forestry University, 2015, 37(11): 120-127. DOI: 10.13332/j.1000-1522.20150144
Citation: HAN Li-liang, SONG Gui-long.. Relationship between root mechanical characteristics and cell wall components of woody plant species.[J]. Journal of Beijing Forestry University, 2015, 37(11): 120-127. DOI: 10.13332/j.1000-1522.20150144

Relationship between root mechanical characteristics and cell wall components of woody plant species.

More Information
  • Received Date: April 28, 2015
  • Published Date: November 29, 2015
  • In order to research the mechanical characteristics of artificial slope protection by woody plants, the single root tensile tests were conducted indoors to study these properties of Ulmus pumila, Amorpha fruticosa, Robinia pseudoacacia and Lespedeza bicolor with 395 samples in Jing-cheng (Ⅲ) expressway where man-made slope was taken as an example. The contents of cell wall components of woody plants were determined such as hemi-cellulose, cellulose, lignin and holo-cellulose after classified into five root diameter classes, and then their mechanical properties were investigated by a systematic analysis. The results showed that a significant difference in tensile force and tensile strength existed between the four woody plants, in descending order as Ulmus pumila, Amorpha fruticosa, Robinia pseudoacacia and Lespedeza bicolor. The root tensile force varied from 22.18 to 464.50 N and tensile strength was in the range of 7.66-36.94 MPa with diameters of 0.95-5.42 mm. The root tensile force increased in power function with the increasing root diameter, meanwhile, the root tensile strength decreased in power function and inverse function with the increasing root diameter. The cellulose contents varied from 20.57% to 36.91%, the lignin contents from 15.12% to 29.84%, the hemi-cellulose contents from 1.37% to 29.26%, the holo-cellulose contents from 28.18% to 66.17%, and the content ratio of lignin to cellulose from 0.45 to 1.31. The cell wall components showed significant differences between different species and different diameters of root. The root tensile force was negatively correlated with lignin; the root tensile strength was positively correlated with lignin, but negatively correlated with hemi-cellulose. The results revealed that various root structures have different tensile stress-strain curves. The stress-strain characteristics of the single root presented straight line relation in the initial phase after tension. When the tensile force kept increasing after loading over elastic restrict, the stress-strain curves presented plastic characteristics gradually. According to the root cell wall components and root tensile properties,Ulmus pumila and Amorpha fruticosa had better performance in slope protection in the Jing-cheng expressway (Ⅲ).
  • [1]
    ROBERT R A. Growth stresses and strains in trees[M]. Berlin:Springer-Verlag,1987.
    [1]
    ZHAO Z M,WU G,WANG X H. Research on greening protection mechanism for engineering slope[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(2):299-305.
    [2]
    ABERNETHY B, RUTHERFURD I D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement[J]. Hydrological Processes, 2001,15(1): 63-79.
    [2]
    JIANG K Y, CHEN L H, GAI X G, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 115-123.
    [3]
    L C J, CHEN L H, ZHOU S, et al. Root mechanical characteristics of different tree species[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(Suppl.1): 329-335.
    [3]
    HALES T C, FORD C R, HWANG T, et al. Topographic and ecologic controls on root reinforcement[J]. Journal of Geophysical Research, 2009,114(3): 1-17.
    [4]
    ZHU H L, HU X S, MAO X Q, et al. Study on mechanical characteristics of shrub roots for slope protection in loess area of Tibetan plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl.2): 3445-3452.
    [4]
    BISCHETTI G B, CHIARADIA E A, SIMONATO T, et al. Root strength and root area ratio of forest species in Lombardy (Northern Italy) [J]. Plant and Soil, 2005,278(1-2): 11-22.
    [5]
    ZHAO L B, ZHANG B G. Experimental study on root bio-mechanics and relevant factors of Medicago sativa and Digitaria sanguinalis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 7-12.
    [5]
    VERGANI C, CHIARADIA E A, BISCHETTI G B. Variability in the tensile resistance of roots in Alpine forest tree species[J]. Ecological Engineering, 2012,46(9): 43-56.
    [6]
    GENET M, STOKES A, SALIN F, et al. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil, 2005,278(1-2): 1-9.
    [6]
    WANG Y Y, SONG G L, HAN L B, et al. Population characteristics on revegetation of Jingcheng Highway rock slope in the third recovery year[J]. Journal of Beijing Forestry University, 2013,35(4):74-80.
    [7]
    GB/T 20806—2006 Determination of neutral detergent fiber in feedstuffs[S]. Beijing: Standards Press of China,2006.
    [7]
    赵志明, 吴光, 王喜华. 工程边坡绿色防护机制研究[J]. 岩石力学与工程学报, 2006,25(2): 299-305.
    [8]
    NY/T 1459—2007 Determination of acid detergent fiber in feedstuffs[S]. Beijing: Standards Press of China,2007.
    [8]
    YANG Y H, LIU S Z,WANG C H, et al. A study of tensile strength tests of arborous species root system in forest engineering technique of shallow landslide[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4): 892-896.
    [9]
    蒋坤云, 陈丽华,盖小刚,等. 华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J]. 农业工程学报, 2013,29(3): 115-123.
    [9]
    GB/T 20805—2006 Determination ofacid detergent lignin in feedstuffs[S]. Beijing: Standards Press of China,2006.
    [10]
    ZHANG J R, ZHU R G, XIA Y F, et al. Testing study on strength of the ZZLS material for erosion control of slope[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(9):1533-1537.
    [10]
    REDDING T, DEVITO K. Mechanisms and pathways of lateral flow on aspen-forested, Luvisolic soils, Western Boreal Plains, Alberta, Canada[J]. Hydrological Processes, 2010, 24(21): 2995-3010.
    [11]
    HATHAWAY R L, PENNY D. Root strength in some Populus and Salix clones[J]. New Zealand Journal of Botany, 1975,13(3): 333-344.
    [12]
    吕春娟,陈丽华,周硕,等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011,27(增刊1): 329-335.
    [13]
    朱海丽, 胡夏嵩,毛小青,等. 青藏高原黄土区护坡灌木植物根系力学特性研究[J]. 岩石力学与工程学报, 2008,27(增刊2): 3445-3452.
    [14]
    ROERING J J, SCHMIDT K M, STOCK J D, et al. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range[J]. Canadian Geotechnical Journal, 2003,40(2): 237-253.
    [15]
    赵丽兵,张宝贵. 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]. 农业工程学报, 2007,23(9): 7-12.
    [16]
    王英宇,宋桂龙,韩烈保,等. 京承高速公路岩石边坡植被重建3年期群落特征分析[J]. 北京林业大学学报, 2013,35(4): 74-80.
    [17]
    GB/T 20806—2006 饲料中中性洗涤纤维的测定[S]. 北京:中国标准出版社,2006.
    [18]
    NY/T 1459—2007 饲料中酸性洗涤纤维的测定[S]. 北京:中国标准出版社,2007.
    [19]
    GB/T 20805—2006 饲料中酸性洗涤木质素的测定[S]. 北京:中国标准出版社,2006.
    [20]
    张季如, 朱瑞赓,夏银飞,等. ZZLS绿色生态护坡材料的强度试验研究[J]. 岩石力学与工程学报, 2003,22(9): 1533-1537.
    [21]
    OPERSTEIN V, FRYDMAN S. The influence of vegetation on soil strength[J]. Ground Improvement, 2000, 4(2): 81-89.
  • Related Articles

    [1]Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215
    [2]Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150
    [3]Lin Shiwei, Zhou Yangyan, Zhang Yue, Li Zheng, Liu Chao, Yin Weilun, Xia Xinli. Function of PdKNAT7 gene in poplar regulating the thickness of secondary cell wall in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(11): 1-9. DOI: 10.12171/j.1000-1522.20210083
    [4]Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197
    [5]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [6]LIN Lan-ying, FU Feng. Nanoindentation test and analysis of cell wall of strengthened composite wood.[J]. Journal of Beijing Forestry University, 2012, 34(5): 139-143.
    [7]CHENG Xiao-qiao, LI Ke, CHEN Xue-mei, JIANG Xiang-ning, GAI Ying. Comparison of pectin structural monosaccharides in cell wall of dicotyledon and monocotyledon.[J]. Journal of Beijing Forestry University, 2012, 34(5): 44-49.
    [8]WANG Chuan-gui, JIANG Ze-hui, FEI Ben-hua, YU Yan, ZHANG Shuang-yan. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110.
    [9]Lv Wei-jun, XUE Chong-yun, CAO Chun-yu, ZHANG Yong. Lignin distribution in wood cell wall and its testing methods[J]. Journal of Beijing Forestry University, 2010, 32(1): 136-141.
    [10]YU Yan, FEI Ben-hua, ZHANG Bo, WANG Ge. Longitudinal MOE and hardness of different cell wall layers of softwood tracheids[J]. Journal of Beijing Forestry University, 2006, 28(5): 114-118.
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (3351) PDF downloads (32) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return