• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
Citation: WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204

Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation

More Information
  • Received Date: June 04, 2015
  • Revised Date: June 04, 2015
  • Published Date: May 30, 2016
  • Leaf Area Index (LAI) is an important parameter of vegetation canopy structure in the research of climate and ecology. Remote sensing technology provides an effective method for rapid acquisition of large-area leaf area index. The Great Xing'an Mountains are an important ecological function area of China, where the present study was conducted. According to the different forest characteristics, we used 4-scale geometrical optics model based on physical process. Simultaneously, we used the multi-perspectives MISR remote sensing data to inverse the leaf area index of this region. Geometrical optics model characterized by parameters have physical significance which considers the hot-spot effect of the ground reflection, and modelling inversion process is independent on sample data, suitable for inversion in a large area. The MISR remote sensing data provide multiple perspectives in the same region, which effectively address the question that LAI can only be observed at a single angle and the question of low level saturation point in the LAI function relationship. Because the scale of ground validation data cannot meet the spatial resolution requirement of the MISR data, TM data were used to scale transformation for plot-measured leaf area index data. We analyzed the heterogeneity of LAI in different slopes and discussed the validation data rationality at different spatial resolutions. Our study shows that the validation data at a 600m spatial resolution can obtain optimal inversion result of MISR data, and at such a resolution, the change of LAI with spatial scale tends to stabilize and successfully avoids the error caused by the geometric registration of the two remote sensing data. The results of our study showed that: 4-scale geometry model is suitable for LAI inversion in the Great Xing'an Mountains, MISR-inversed mean absolute error of LAI is 25.6% and RMSE (the root-mean-square error) is 0.622. This research provides foundation for rapid, quantitative inversion of LAI in the Great Xing'an Mountains.
  • [1]
    YANG F, SUN J L, ZHANG B, et al. Assessment of MODIS LAI product accuracy based on the PROSAIL model, TM and field measurements[J]. Transactions of the CSAE, 2010, 26(4): 192-197.
    [1]
    杨飞, 孙九林, 张柏, 等. 基于PROSAIL模型及TM与实测数据的MODIS LAI精度评价[J]. 农业工程学报, 2010, 26(4):192-197.
    [2]
    SONNENAG O, TALBOT J, CHEN J M, et al. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland[J]. Agricultural and Forest Meteorology, 2007, 144(3): 200-212.
    [2]
    LIU J Y, TANG X G, CHANG S Z, et al. Application of remote sensing to inverse the forest leaf area index and regional estimation[J]. Remote Sensing Technology and Application, 2014, 29(1):18-25.
    [3]
    CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4): 421-429.
    [3]
    HUANG M, JI J J. The spatial-temporal distribution of leaf area index in China: a comparison between ecosystem modeling and remote sensing reversion[J]. Acta Ecologica Sinica, 2010, 30(11):3057-3064.
    [4]
    LIU Y, LIU R G, CHEN J M, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5):734-743.
    [4]
    刘婧怡, 汤旭光, 常守志, 等. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014,29(1):18-25.
    [5]
    XU X R. Physical principles of remote-sensing[M]. Beijing: Peking University Press, 2005.
    [5]
    黄玫, 季劲钧. 中国区域植被叶面积指数时空分布:机理模型模拟与遥感反演比较[J]. 生态学报, 2010, 30(11):3057-3064.
    [6]
    刘洋, 刘荣高, 陈镜明,等.叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5):734-743.
    [6]
    WAN H W, WANG J D, LIANG S L, et al.Estimating leaf area index by fusing MODIS and MISR data [J]. Spectroscopy and Spectral Analysis, 2009, 29(11):3106-3111.
    [7]
    ZHANG Y Y. The research on the remote sensing model for forest biomass in Daxing'an Mountains[D]. Harbin:Northeast Forestry University, 2009.
    [7]
    徐希孺. 遥感物理[M].北京:北京大学出版社,2005.
    [8]
    CHEN M, DENG F. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2230-2238.
    [8]
    ZOU J, YAN G J. Optical methods for in situ measuring leaf area index of forest canopy[J]. Chinese Journal of Applied Ecology, 2010, 21(11):2971-2979.
    [9]
    YU Y, FAN W Y, YANG X G. Comparisons of three models for vegetation canopy bi-directional reflectance distribution function[J]. Chinese Journal of Plant Ecology, 2012,36(1):55-62.
    [9]
    FANG H, LIANG S, KUUSK A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment, 2003, 85(3): 257-270.
    [10]
    万华伟, 王锦地, 梁顺林,等.联合MODIS与MISR遥感数据估算叶面积指数[J]. 光谱学与光谱分析, 2009, 29(11):3106-3111.
    [10]
    XIANG H B, GUO Z H, ZHAO Z Q,et al. Estimating method of forest leaf area index on different space scales[J]. Scientia Silvae Sinicae, 2009, 45(6): 139-144.
    [11]
    张元元. 大兴安岭地区森林生物量遥感模型的研究[D].哈尔滨: 东北林业大学, 2009.
    [11]
    JIAO Z M. Research on retrieval and spatial scaling of leaf area index from remote sensing images[D]. Beijing:Beijing Forestry University,2014.
    [12]
    DEMAREZ V, DUTHOIT S, BARET F, et al. Estimation of leaf area and clumping indexes of crops with hemispherical photographs[J]. Agricultural and Forest Meteorology, 2008, 148(4): 644-655.
    [13]
    邹杰, 阎广建. 森林冠层地面叶面积指数光学测量方法研究进展[J]. 应用生态学报, 2010,21(11): 2971-2979.
    [14]
    KOKHANOVSKY A A, BREON F M, CACCIARI A, et al. Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments[J]. Atmospheric Research, 2007, 85(3): 372-394.
    [15]
    STENBERG P, RAUTIAINENI M, MANNINEN T, et al. Boreal forest leaf area index from optical satellite images: model simulations and empirical analyses using data from central Finland[J]. Boreal Environment Research, 2008, 13(5): 433-443.
    [16]
    CHEN J M, LI X, NILSON T, et al. Recent advances in geometrical optical modelling and its applications[J]. Remote Sensing Reviews, 2000, 18(2-4): 227-262.
    [17]
    于颖, 范文义, 杨曦光. 三种植被冠层二向反射分布函数模型的比较[J]. 植物生态学报, 2012, 36(1): 55-62.
    [18]
    BROWN L, CHEN J M, LEBLANC S G, et al. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis[J]. Remote Sensing of Environment, 2000, 71(1): 16-25.
    [19]
    DENG F, CHEN M, PLUMMER S, et al. Algorithm for global leaf area index retrieval using satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2219-2229.
    [20]
    ROUJEAN J L, LEROG M, DESCHAMPS D Y. A bidinectional reflectance model of the earth's surface for the correction of remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 1992, 97: 20455-20468.
    [21]
    CHEN J M, CIHLAR J. A hotspot function in a simple bidirectional reflectance model for satellite applications[J]. Journal of Geophysical Research: Atmospheres, 1997, 102: 25907-25913.
    [22]
    向洪波, 郭志华, 赵占轻, 等. 不同空间尺度森林叶面积指数的估算方法[J]. 林业科学, 2009, 45(6): 139-144.
    [23]
    焦志敏. 植被叶面积指数遥感反演及空间尺度转换研究[D].北京:北京林业大学, 2014.
    [24]
    CHEN J M, PAVLIC G, BROWN L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote Sensing of Environment, 2002, 80(1): 165-184.
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views (1671) PDF downloads (29) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return