• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
Citation: WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204

Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation

More Information
  • Received Date: June 04, 2015
  • Revised Date: June 04, 2015
  • Published Date: May 30, 2016
  • Leaf Area Index (LAI) is an important parameter of vegetation canopy structure in the research of climate and ecology. Remote sensing technology provides an effective method for rapid acquisition of large-area leaf area index. The Great Xing'an Mountains are an important ecological function area of China, where the present study was conducted. According to the different forest characteristics, we used 4-scale geometrical optics model based on physical process. Simultaneously, we used the multi-perspectives MISR remote sensing data to inverse the leaf area index of this region. Geometrical optics model characterized by parameters have physical significance which considers the hot-spot effect of the ground reflection, and modelling inversion process is independent on sample data, suitable for inversion in a large area. The MISR remote sensing data provide multiple perspectives in the same region, which effectively address the question that LAI can only be observed at a single angle and the question of low level saturation point in the LAI function relationship. Because the scale of ground validation data cannot meet the spatial resolution requirement of the MISR data, TM data were used to scale transformation for plot-measured leaf area index data. We analyzed the heterogeneity of LAI in different slopes and discussed the validation data rationality at different spatial resolutions. Our study shows that the validation data at a 600m spatial resolution can obtain optimal inversion result of MISR data, and at such a resolution, the change of LAI with spatial scale tends to stabilize and successfully avoids the error caused by the geometric registration of the two remote sensing data. The results of our study showed that: 4-scale geometry model is suitable for LAI inversion in the Great Xing'an Mountains, MISR-inversed mean absolute error of LAI is 25.6% and RMSE (the root-mean-square error) is 0.622. This research provides foundation for rapid, quantitative inversion of LAI in the Great Xing'an Mountains.
  • [1]
    YANG F, SUN J L, ZHANG B, et al. Assessment of MODIS LAI product accuracy based on the PROSAIL model, TM and field measurements[J]. Transactions of the CSAE, 2010, 26(4): 192-197.
    [1]
    杨飞, 孙九林, 张柏, 等. 基于PROSAIL模型及TM与实测数据的MODIS LAI精度评价[J]. 农业工程学报, 2010, 26(4):192-197.
    [2]
    SONNENAG O, TALBOT J, CHEN J M, et al. Using direct and indirect measurements of leaf area index to characterize the shrub canopy in an ombrotrophic peatland[J]. Agricultural and Forest Meteorology, 2007, 144(3): 200-212.
    [2]
    LIU J Y, TANG X G, CHANG S Z, et al. Application of remote sensing to inverse the forest leaf area index and regional estimation[J]. Remote Sensing Technology and Application, 2014, 29(1):18-25.
    [3]
    CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4): 421-429.
    [3]
    HUANG M, JI J J. The spatial-temporal distribution of leaf area index in China: a comparison between ecosystem modeling and remote sensing reversion[J]. Acta Ecologica Sinica, 2010, 30(11):3057-3064.
    [4]
    LIU Y, LIU R G, CHEN J M, et al. Current status and perspectives of leaf area index retrieval from optical remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(5):734-743.
    [4]
    刘婧怡, 汤旭光, 常守志, 等. 森林叶面积指数遥感反演模型构建及区域估算[J]. 遥感技术与应用, 2014,29(1):18-25.
    [5]
    XU X R. Physical principles of remote-sensing[M]. Beijing: Peking University Press, 2005.
    [5]
    黄玫, 季劲钧. 中国区域植被叶面积指数时空分布:机理模型模拟与遥感反演比较[J]. 生态学报, 2010, 30(11):3057-3064.
    [6]
    刘洋, 刘荣高, 陈镜明,等.叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013, 15(5):734-743.
    [6]
    WAN H W, WANG J D, LIANG S L, et al.Estimating leaf area index by fusing MODIS and MISR data [J]. Spectroscopy and Spectral Analysis, 2009, 29(11):3106-3111.
    [7]
    ZHANG Y Y. The research on the remote sensing model for forest biomass in Daxing'an Mountains[D]. Harbin:Northeast Forestry University, 2009.
    [7]
    徐希孺. 遥感物理[M].北京:北京大学出版社,2005.
    [8]
    CHEN M, DENG F. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2230-2238.
    [8]
    ZOU J, YAN G J. Optical methods for in situ measuring leaf area index of forest canopy[J]. Chinese Journal of Applied Ecology, 2010, 21(11):2971-2979.
    [9]
    YU Y, FAN W Y, YANG X G. Comparisons of three models for vegetation canopy bi-directional reflectance distribution function[J]. Chinese Journal of Plant Ecology, 2012,36(1):55-62.
    [9]
    FANG H, LIANG S, KUUSK A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model[J]. Remote Sensing of Environment, 2003, 85(3): 257-270.
    [10]
    万华伟, 王锦地, 梁顺林,等.联合MODIS与MISR遥感数据估算叶面积指数[J]. 光谱学与光谱分析, 2009, 29(11):3106-3111.
    [10]
    XIANG H B, GUO Z H, ZHAO Z Q,et al. Estimating method of forest leaf area index on different space scales[J]. Scientia Silvae Sinicae, 2009, 45(6): 139-144.
    [11]
    张元元. 大兴安岭地区森林生物量遥感模型的研究[D].哈尔滨: 东北林业大学, 2009.
    [11]
    JIAO Z M. Research on retrieval and spatial scaling of leaf area index from remote sensing images[D]. Beijing:Beijing Forestry University,2014.
    [12]
    DEMAREZ V, DUTHOIT S, BARET F, et al. Estimation of leaf area and clumping indexes of crops with hemispherical photographs[J]. Agricultural and Forest Meteorology, 2008, 148(4): 644-655.
    [13]
    邹杰, 阎广建. 森林冠层地面叶面积指数光学测量方法研究进展[J]. 应用生态学报, 2010,21(11): 2971-2979.
    [14]
    KOKHANOVSKY A A, BREON F M, CACCIARI A, et al. Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments[J]. Atmospheric Research, 2007, 85(3): 372-394.
    [15]
    STENBERG P, RAUTIAINENI M, MANNINEN T, et al. Boreal forest leaf area index from optical satellite images: model simulations and empirical analyses using data from central Finland[J]. Boreal Environment Research, 2008, 13(5): 433-443.
    [16]
    CHEN J M, LI X, NILSON T, et al. Recent advances in geometrical optical modelling and its applications[J]. Remote Sensing Reviews, 2000, 18(2-4): 227-262.
    [17]
    于颖, 范文义, 杨曦光. 三种植被冠层二向反射分布函数模型的比较[J]. 植物生态学报, 2012, 36(1): 55-62.
    [18]
    BROWN L, CHEN J M, LEBLANC S G, et al. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis[J]. Remote Sensing of Environment, 2000, 71(1): 16-25.
    [19]
    DENG F, CHEN M, PLUMMER S, et al. Algorithm for global leaf area index retrieval using satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2219-2229.
    [20]
    ROUJEAN J L, LEROG M, DESCHAMPS D Y. A bidinectional reflectance model of the earth's surface for the correction of remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 1992, 97: 20455-20468.
    [21]
    CHEN J M, CIHLAR J. A hotspot function in a simple bidirectional reflectance model for satellite applications[J]. Journal of Geophysical Research: Atmospheres, 1997, 102: 25907-25913.
    [22]
    向洪波, 郭志华, 赵占轻, 等. 不同空间尺度森林叶面积指数的估算方法[J]. 林业科学, 2009, 45(6): 139-144.
    [23]
    焦志敏. 植被叶面积指数遥感反演及空间尺度转换研究[D].北京:北京林业大学, 2014.
    [24]
    CHEN J M, PAVLIC G, BROWN L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote Sensing of Environment, 2002, 80(1): 165-184.
  • Related Articles

    [1]Li Weiwei, Yang Xueqing, Zhang Yiming, Feng Xin, Wang Bo, Du Jianhua, Chen Feng, Liu Xiaodong. Hazard assessment of forest fire in Miyun District of Beijing based on the subcompartment scale[J]. Journal of Beijing Forestry University, 2024, 46(2): 75-86. DOI: 10.12171/j.1000-1522.20230227
    [2]Jing Tianzhong, Lu Huayang, Liu Liping, Dai Limin, Fan Miao, Cai Xiaolin, Bai Li, Li Xiang, Li Manyu, Wen Yi, Han Qing. Analysis of small-scale spatial pattern of Endoclita excrescens based on SADIE and SPPA[J]. Journal of Beijing Forestry University, 2023, 45(9): 95-103. DOI: 10.12171/j.1000-1522.20220053
    [3]Fan Yinglong, Tang Sainan, Tan Bingxiang. Forest cover change detection based on multi-scale segmentation and tasseled cap transformation over plateau area[J]. Journal of Beijing Forestry University, 2023, 45(4): 60-69. DOI: 10.12171/j.1000-1522.20220375
    [4]Yu Ying, Liu Min, Fan Wenyi, Wei Tiantian, Cheng Tenghui, Jiang Bo, Zhang Yue. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models[J]. Journal of Beijing Forestry University, 2020, 42(10): 27-35. DOI: 10.12171/j.1000-1522.20190190
    [5]Wang Jianan, Xia Yuanqian, Zhao Dexian, Chu Xian, Hu Ma, Hu Juan, Liu Hui. Crown scale and growth space demands of main tree species in urban forest[J]. Journal of Beijing Forestry University, 2018, 40(3): 42-54. DOI: 10.13332/j.1000-1522.20170331
    [6]Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338
    [7]KONG Bo, DENG Wei, TAO He-ping, YU Huan, LI Ai-nong. Patterns of human disturbance at multiple scales in the wetland of Sanjiang Plain, northeastern China[J]. Journal of Beijing Forestry University, 2010, 32(2): 100-105.
    [8]WANG Chun-ling, SONG Tie-ying, YU Xin-xiao. Regulation method of spatial allocation for protection forest system at small watershed scale.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 41-46.
    [9]ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112.
    [10]ZHANG Zhi-shan, ZHANG Xiao-you, TAN Hui-juan, HE Ming-zhu, ZHENG Jing-gang, LI Xin-rong. Measurement on the transpiration of xerophils in the desert area with steady state porometer and stem heat balance technique[J]. Journal of Beijing Forestry University, 2007, 29(1): 60-66. DOI: 10.13332/j.1000-1522.2007.01.011
  • Cited by

    Periodical cited type(11)

    1. 李捷,孙文涛,庞晓攀,徐雪婷,杨欢,郭正刚. 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报. 2024(07): 2993-3003 .
    2. 尹才佳,马龙,邹书珍,康迪. 地震滑坡体恢复后植物β多样性格局及其环境响应. 西北植物学报. 2023(02): 316-325 .
    3. 陈瑶,余雯静,陈珑,郭汝凤,吴承祯,李键. 基于同质园的不同品种茶树叶性状变异及经济谱. 应用与环境生物学报. 2023(03): 720-729 .
    4. Jianghao ZHAO,Yingying LIU,Xiaoguo BAI,Anping LI,Yanjiao LI,Shiping CHENG,Guang QI. Phylogenetic Structure of Low Altitude Forest Communities in Baotianman Mountain. Asian Agricultural Research. 2022(06): 31-36 .
    5. 王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
    6. 杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响. 中国沙漠. 2021(03): 147-154 .
    7. 高辉,刘丽娟,方江平. 西藏色季拉山森林群落沿海拔梯度变化格局. 广西师范大学学报(自然科学版). 2020(06): 122-130 .
    8. 周昌艳,王彬,邓云,乌俊杰,曹敏,林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性. 2020(12): 1546-1557 .
    9. 庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
    10. 刘丽杰,尹航,金慧,赵莹,贾翔. 基于生态文明视角下长白山生物多样性保护研究探索. 吉林农业. 2018(04): 97 .
    11. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(14)

Catalog

    Article views (1673) PDF downloads (29) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return