• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fan Yinglong, Tang Sainan, Tan Bingxiang. Forest cover change detection based on multi-scale segmentation and tasseled cap transformation over plateau area[J]. Journal of Beijing Forestry University, 2023, 45(4): 60-69. DOI: 10.12171/j.1000-1522.20220375
Citation: Fan Yinglong, Tang Sainan, Tan Bingxiang. Forest cover change detection based on multi-scale segmentation and tasseled cap transformation over plateau area[J]. Journal of Beijing Forestry University, 2023, 45(4): 60-69. DOI: 10.12171/j.1000-1522.20220375

Forest cover change detection based on multi-scale segmentation and tasseled cap transformation over plateau area

More Information
  • Received Date: September 13, 2022
  • Revised Date: February 22, 2023
  • Available Online: April 03, 2023
  • Published Date: April 24, 2023
  •   Objective  Based on multi-scale segmentation and tasseled cap transformation, this paper aims to develop a detection method for forest cover change in complex plateau area.
      Method  Using Landsat 5 TM and Landsat 8 OLI multispectral images, taking the transitional mountainous area of the Yunnan Middle East Plateau of northwestern China as the research area, based on multi-scale segmentation, using the tasseled cap transformation (TCT) and principal component analysis (PCA), the object-oriented multi feature change vector was reconstructed, the optimal threshold was determined, forest cover change information was extracted, and the accuracy of the results was verified.
      Result  (1) The overall accuracy of the test results by PMKT-D was 92.32%, and the Kappa coefficient was 0.843 7, which was significantly better than the control method. (2) From 2010 to 2020, the area of forest cover change in the transition mountain zone of Middle East Yunnan Plateau was 356.88 km2, accounting for 1.06% of the total image area, indicating significant changes of forest cover.
      Conclusion  Based on multi-scale segmentation, the method combining TCT and PCA can effectively reduce the adverse effects of complex topography and phenology, enhance spectral characteristics of forest cover changes and improve the accuracy of the change detection significantly while take advantages of object-oriented multi-feature change vector.
  • [1]
    李世明, 王志慧, 韩学文, 等. 森林资源变化遥感监测技术研究进展[J]. 北京林业大学学报, 2011, 33(3): 132−138. doi: 10.13332/j.1000-1522.2011.03.024

    Li S M, Wang Z H, Han X W, et al. Overview of forest resources change detection methods using remote sensing techniques[J]. Journal of Beijing Forestry University, 2011, 33(3): 132−138. doi: 10.13332/j.1000-1522.2011.03.024
    [2]
    王崇阳, 田昕. 基于GF-1 PMS数据的森林覆盖变化检测[J]. 遥感技术与应用, 2021, 36(1): 208−216.

    Wang C Y, Tian X. Forest cover change detection based on GF-1 PMS data[J]. Remote Sensing Technology and Application, 2021, 36(1): 208−216.
    [3]
    郝荣欣. 基于GF-1多光谱影像的林地变化检测方法研究[D]. 西安: 西安科技大学, 2016.

    Hao R X. Forest cover change detection method using GF-1 Multi-spectral data[D]. Xi’an: Xi’an University of Science and Technology, 2016.
    [4]
    张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2016.02.005

    Zhang L Y, Zhao T Z, Xia C Z, et al. Application of change detection technologies of remote sensing to forestry[J]. World Forestry Research, 2016, 29(2): 44−48. doi: 10.13348/j.cnki.sjlyyj.2016.02.005
    [5]
    周启鸣. 多时相遥感影像变化检测综述[J]. 地理信息世界, 2011, 9(2): 28−33. doi: 10.3969/j.issn.1672-1586.2011.02.007

    Zhou Q M. Review on change detection using multi-temporal remotely sensed imagery[J]. Geomatics World, 2011, 9(2): 28−33. doi: 10.3969/j.issn.1672-1586.2011.02.007
    [6]
    颜伟, 周雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 34(3): 445−454.

    Yan W, Zhou W, Yi L L, et al. Research progress of remote sensing classification and change monitoring on forest types[J]. Remote Sensing Technology and Application, 2019, 34(3): 445−454.
    [7]
    吴雪琼, 覃先林, 周汝良, 等. 森林覆盖变化遥感监测方法研究进展[J]. 林业资源管理, 2010(4): 82−87. doi: 10.3969/j.issn.1002-6622.2010.04.018

    Wu X Q, Qin X L, Zhou R L, et al. Progress of study on forest cover change detection by using remote sensing technique[J]. Forest Resources Management, 2010(4): 82−87. doi: 10.3969/j.issn.1002-6622.2010.04.018
    [8]
    靖娟利, 刘兵, 徐勇, 等. 基于多特征融合的反向传播神经网络高分影像分类与变化检测[J]. 科学技术与工程, 2021, 21(36): 15378−15385. doi: 10.3969/j.issn.1671-1815.2021.36.011

    Jing J L, Liu B, Xu Y, et al. High-resolution remote sensing image classification and change detection based on back propagation neural network with multi-feature fusion[J]. Science Technology and Engineering, 2021, 21(36): 15378−15385. doi: 10.3969/j.issn.1671-1815.2021.36.011
    [9]
    窦世卿, 宋莹莹, 徐勇, 等. 基于随机森林的高分影像分类及土地利用变化检测[J]. 无线电工程, 2021, 51(9): 901−908. doi: 10.3969/j.issn.1003-3106.2021.09.009

    Dou S Q, Song Y Y, Xu Y, et al. High resolution image classification and land use change detection based on random forest[J]. Radio Engineering, 2021, 51(9): 901−908. doi: 10.3969/j.issn.1003-3106.2021.09.009
    [10]
    雷鸣, 田卫新, 任东, 等. 基于对象分类的遥感影像森林变化检测方法[J]. 森林与环境学报, 2019, 39(6): 641−646.

    Lei M, Tian W X, Ren D, et al. Forest change detection method for remote sensing images based on object classification[J]. Journal of Forest and Environment, 2019, 39(6): 641−646.
    [11]
    张沁雨, 胡曼, 彭道黎. 基于面向对象分类的延庆区公益林变化检测[J]. 中南林业科技大学学报, 2019, 39(1): 32−38. doi: 10.14067/j.cnki.1673-923x.2019.01.006

    Zhang Q Y, Hu M, Peng D L. Non-commercial forest change detection based on object-oriented classification in Yanqing District of Beijing[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1): 32−38. doi: 10.14067/j.cnki.1673-923x.2019.01.006
    [12]
    Ozdogan. A practical and automated approach to large area forest disturbance mapping with remote sensing[J]. PLoS ONE, 2014, 9(4): e78438. doi: 10.1371/journal.pone.0078438
    [13]
    Jin S, Yang L, Danielson P, et al. A comprehensive change detection method for updating the national land cover database to circa 2011[J]. Remote Sensing of Environment, 2013, 132: 159−175. doi: 10.1016/j.rse.2013.01.012
    [14]
    佃袁勇, 方圣辉, 姚崇怀. 多尺度分割的高分辨率遥感影像变化检测[J]. 遥感学报, 2016, 20(1): 129−137.

    Dian Y Y, Fang S H, Yao C H. Change detection for high-resolution images using multilevel segment method[J]. Journal of Remote Sensing, 2016, 20(1): 129−137.
    [15]
    王丽云, 李艳, 汪禹芹. 基于对象变化矢量分析的土地利用变化检测方法研究[J]. 地球信息科学学报, 2014, 16(2): 307−313.

    Wang L Y, Li Y, Wang Y Q. Research on land use change detection based on an object-oriented change vector analysis method[J]. Journal of Geo-information Science, 2014, 16(2): 307−313.
    [16]
    王晓慧, 谭炳香, 李世明, 等. 基于面向对象多特征变化向量分析法的森林资源变化检测[J]. 林业科学研究, 2021, 34(1): 98−105. doi: 10.13275/j.cnki.lykxyj.2021.01.012

    Wang X H, Tan B X, Li S M, et al. Object-oriented forest change detection based on multi-feature change vector analysis[J]. Forest Research, 2021, 34(1): 98−105. doi: 10.13275/j.cnki.lykxyj.2021.01.012
    [17]
    Jeffrey M. Automated registration and orthorectification package for Landsat and Landsat-like data processing[J]. Journal of Applied Remote Sensing, 2009, 3(1): 691−701.
    [18]
    Jiang J, Li A, Deng W, et al. Construction of a new classifier integrated multiple sources and multi-temporal remote sensing data for wetlands[J]. Procedia Environmental Sciences, 2010, 2: 302−314. doi: 10.1016/j.proenv.2010.10.036
    [19]
    Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1): 183−198. doi: 10.1016/j.rse.2009.08.017
    [20]
    Thomas N E, Huang C, Goward S N, et al. Validation of North American forest disturbance dynamics derived from Landsat time series stacks[J]. Remote Sensing of Environment, 2011, 115(1): 19−32. doi: 10.1016/j.rse.2010.07.009
    [21]
    Masek J G, Vermote E F, Saleous N E, et al. A Landsat surface reflectance dataset for North America, 1990−2000[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 68−72. doi: 10.1109/LGRS.2005.857030
    [22]
    李爱农, 蒋金刚, 边成虎, 等. 基于AROP程序包的类Landsat遥感影像配准与正射纠正试验和进度分析[J]. 遥感技术与应用, 2012, 27(1): 23−32. doi: 10.11873/j.issn.1004-0323.2012.1.23

    Li A N, Jiang J G, Bian C H, et al. Experiment and accuracy analysis of automated registration and orthorectification for Landsat-like images based on AROP[J]. Remote Sensing Technology and Application, 2012, 27(1): 23−32. doi: 10.11873/j.issn.1004-0323.2012.1.23
    [23]
    Masek J G, Vermote E F, Saleous N E, et al. A Landsat surface reflectance dataset for North America, 1990−2000[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 31(1): 68−72.
    [24]
    陈军, 陈晋, 廖安平, 等. 全球30米地表覆盖遥感制图的总体技术[J]. 测绘学报, 2014, 43(6): 551−557.

    Chen J, Chen J, Liao A P, et al. Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 551−557.
    [25]
    Chen J, Ban Y F, Li S N. China: open access to earth land-cover map[J]. Nature, 2014, 514: 434.
    [26]
    Chen J, Liao A P, Cao X, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Romte Sensing, 2015, 103: 7−27. doi: 10.1016/j.isprsjprs.2014.09.002
    [27]
    Tab F A, Naghdy G, Mertins A. Scalable multiresolution color image segmentation[J]. Signal Processing, 2006, 6(7): 1670−1687.
    [28]
    罗开盛, 陶福禄. 融合面向对象与缨帽变换的湿地覆被类别遥感提取方法[J]. 农业工程学报, 2017, 33(3): 198−203. doi: 10.11975/j.issn.1002-6819.2017.03.027

    Luo K S, Tao F L. Method for wetland type extraction using remote sensing combing object-oriented and tasseled cap transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 198−203. doi: 10.11975/j.issn.1002-6819.2017.03.027
    [29]
    Kauth R J, Thomas G S. The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]// Proceedings, Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: Purdue University, 1976: 41−51.
    [30]
    Rogan J, Franklin J, Roberts D A. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery[J]. Remote Sensing of Environment, 2001, 80(1): 143−156.
    [31]
    Liu Q, Liu G, Huang C, et al. Comparison of tasselled cap components of images from Landsat 5 thematic mapper and Landsat 7 enhanced thematic mapper plus[J]. Journal of Spatial Science, 2016, 61(2): 351−365. doi: 10.1080/14498596.2015.1124810
    [32]
    李博伦, 遆超普, 颜晓元. Landsat 8陆地成像仪影像的缨帽变换推导[J]. 测绘科学, 2016, 41(4): 102−107.

    Li B L, Ti C P, Yan X Y. Study of derivation of tasseled cap transformation for Landsat 8 OLI images[J]. Science of Surveying and Mapping, 2016, 41(4): 102−107.
    [33]
    Friedl M A, Strahler A H, Brodley C E. Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Transactions on Geo Science and Remote Sensing, 1999, 37(2): 969−977. doi: 10.1109/36.752215
    [34]
    张正健, 李爱农, 雷光斌, 等. 基于多尺度分割和决策树算法的山区遥感影像变化检测方法−以四川攀西地区为例[J]. 生态学报, 2014, 34(24): 7222−7232.

    Zhang Z J, Li A N, Lei G B, et al. Change detection of remote sensing images based on multiscale segmentation and decision tree algorithm over mountainous area: a case study in Panxi Region, Sichuan Province[J]. Acta Ecologica Sinica, 2014, 34(24): 7222−7232.
    [35]
    Mas J F. Monitoring land-cover changes a comparison of change[J]. International Journal of Remote Sensing, 1999, 20(1): 139−152. doi: 10.1080/014311699213659
    [36]
    Radeloff V C, Mladenoff D J, Boyce M S. Effects of interacting disturbances on landscape patterns: budworm defoliation and salvage logging[J]. Ecological Applications, 2000, 10(1): 233−247. doi: 10.1890/1051-0761(2000)010[0233:EOIDOL]2.0.CO;2
    [37]
    Song X L, Cheng B. Change detection using change vector analysis from Landsat TM images in Wuhan[J]. Procedia Environmental Sciences, 2011, 11: 238−244. doi: 10.1016/j.proenv.2011.12.037
    [38]
    林克正, 班守峰, 张玉双. 一种基于变化向量分析的变化检测方法[J]. 哈尔滨理工大学学报, 2008, 13(4): 47−49. doi: 10.3969/j.issn.1007-2683.2008.04.014

    Lin K Z, Ban S F, Zhang Y S. A chagne detection based change vector analysis[J]. Journal of Harbin University of Science and Technology, 2008, 13(4): 47−49. doi: 10.3969/j.issn.1007-2683.2008.04.014
    [39]
    邓劲松, 石媛媛, 陈利苏, 等. 基于近红外传感器和面向对象光谱分割技术的田间棉株识别与提取[J]. 光谱学与光谱分析, 2009, 29(7): 1754−1758. doi: 10.3964/j.issn.1000-0593(2009)07-1754-05

    Deng J S, Shi Y Y, Chen L S, et al. Cotton identification and extraction using near infrared sensor and object-oriented spectral segmentation technique[J]. Spectroscopy and Spectral Analysis, 2009, 29(7): 1754−1758. doi: 10.3964/j.issn.1000-0593(2009)07-1754-05
    [40]
    Dai X L, Khorram S. The effects of image misregistration on the accuracy of remotely sensed change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1566−1577 .
  • Related Articles

    [1]Liu Qianqian, He Kangning, Zuo Yafan, Cheng Chang, Zou Xingchen, Liu Jingwen, Shi Zhengyang, Li Rui, Peng Xiaojing. Spatiotemporal changes and driving forces of vegetation NPP in transition zone between the Loess Plateau and Qinghai Tibet Plateau: a case study of Datong County, Qinghai Province of northwestern China[J]. Journal of Beijing Forestry University, 2025, 47(1): 39-50. DOI: 10.12171/j.1000-1522.20240193
    [2]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [3]Shi Yao, Li Jiayi, Gao Na, Zheng Xi. Assessment on socio-ecosystem vulnerability in shallow mountain area of Beijing under climate change background[J]. Journal of Beijing Forestry University, 2020, 42(4): 132-141. DOI: 10.12171/j.1000-1522.20190091
    [4]ZHANG Jian-jun, , NA Lei, ZHANG Bo. Applicability of the distributed hydrological model of HEC-HMS in a small watershed of the Loess Plateau area.[J]. Journal of Beijing Forestry University, 2009, 31(3): 52-57.
    [5]WANG Li, , ZHANG Qing-feng, WEI San-ping, WANG Quan-jiu. Vegetation restoration model in a watershed of a coal mining area in the water and wind erosion crossing zone of the Loess Plateau.[J]. Journal of Beijing Forestry University, 2009, 31(2): 36-43.
    [6]ZHU Li, QIN Fu-cang, YAO Yun-feng, AN Bu-ke, YU Xin-xiao. Dynamic change of protection forest pattern in middle-scale watershed in rocky mountain areas of northern China.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 76-81.
    [7]GUO Xiao-ping, ZHU Qing-ke, ZHU Jin-zhao, SHEN Ying-bai. Effects of irrigation treatment on pear trees on the Loess Plateau in western Shanxi Province[J]. Journal of Beijing Forestry University, 2006, 28(4): 118-122.
    [8]KUANG Wen-hui, ZHANG Shu-wen, ZHANG Yang-zhen, LI Ying, HOU Wei. Changes of forest landscape and its driving mechanism during the last fifty years in the eastern mountain area of Jilin Province[J]. Journal of Beijing Forestry University, 2006, 28(3): 38-45.
    [9]WANG Sheng-ping, ZHANG Zhi-qiang, SUN Ge, ZHANG Man-liang, YU Xin-xiao. Effects of land use change on hydrological dynamics at watershed scale in the Loess Plateau-A case study in the Lüergou watershed, Gansu Province[J]. Journal of Beijing Forestry University, 2006, 28(1): 48-54.
    [10]WANG Xiao-dan, CHEN Bin-ru, GAO Pan, CHENG Gen-wei. Changes of land use and landscape patterns of the Gongga Mountain area on the eastern edge of Qinghai-Tibetan Plateau[J]. Journal of Beijing Forestry University, 2005, 27(3): 40-45.
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (585) PDF downloads (88) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return