• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Ying, Liu Min, Fan Wenyi, Wei Tiantian, Cheng Tenghui, Jiang Bo, Zhang Yue. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models[J]. Journal of Beijing Forestry University, 2020, 42(10): 27-35. DOI: 10.12171/j.1000-1522.20190190
Citation: Yu Ying, Liu Min, Fan Wenyi, Wei Tiantian, Cheng Tenghui, Jiang Bo, Zhang Yue. Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models[J]. Journal of Beijing Forestry University, 2020, 42(10): 27-35. DOI: 10.12171/j.1000-1522.20190190

Scale conversion of photochemical reflectance index based on PROSPECT and 4-scale models

More Information
  • Received Date: June 27, 2019
  • Revised Date: December 27, 2019
  • Available Online: September 11, 2020
  • Published Date: October 24, 2020
  •   Objective  Photochemical reflectance index (PRI) plays an important role in accurately estimating photosynthetic light use efficiency (LUE). However, at different levels, such as leaf, canopy and landscape levels, the relationship between PRI and LUE and their influencing factors are different. The spectra obtained by the sensor are pixel and canopy spectra. The PRI-LUE relationship model of the leaf level cannot be directly used for canopy-level data. Therefore, the canopy level PRI needs to be scale-converted to obtain the leaf level PRI.
      Method  In this paper, the leaf-level PROSPECT model was used to simulate the reflectance and transmittance of the leaves considering different biochemical parameters, and then the leaf-level PRI and the simple ratio PRI (denoted as SR-PRI) were calculated. Secondly, the obtained leaf-level reflectance and transmittance were input as parameters to 4-scale model to get canopy reflectance under different LAIs, and the canopy-level PRI and SR-PRI were calculated. Finally, the regression analysis of PRI and SR-PRI in canopy and leaf level was carried out under different LAIs. The sensitivity of the influencing factors on PRI and SR-PRI at different scales was analyzed.
      Result  PRI and SR-PRI of the canopy level have a good linear relationship with that of the leaf level. SR-PRI is generally better than PRI at the relationship of both levels, and the coefficients R2 is positively correlated with LAI.
      Conclusion  The 4-scale model is feasible for scale conversion between canopy and leaf for PRI and SR-PRI. Canopy level PRI and SR-PRI can be transformed to leaf level by the functions established at different LAIs efficiently.
  • [1]
    杨曦光, 范文义, 于颖. 基于PROSPECT + SAIL模型的森林冠层叶绿素含量反演[J]. 光谱学与光谱分析, 2010, 30(11):3022−3026.

    Yang X G, Fan W Y, Yu Y. Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models[J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 3022−3026.
    [2]
    杨曦光, 于颖, 黄海军, 等. 森林冠层氮含量遥感估算[J]. 红外与毫米波学报, 2012, 31(6):536−543.

    Yang X G, Yu Y, Huang H J, et al. Estimation of forest canopy nitrogen content based on remote sensing[J]. Journal of Infrared and Millimeter Waves, 2012, 31(6): 536−543.
    [3]
    Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1): 35−44. doi: 10.1016/0034-4257(92)90059-S
    [4]
    陈晋, 唐艳鸿, 陈学泓, 等. 利用光化学反射植被指数估算光能利用率研究的进展[J]. 遥感学报, 2008, 12(2):23−28.

    Chen J, Tang Y H, Chen X H, et al. The review of estimating light use efficiency through photochemical reflectance index (PRI)[J]. Journal of Remote Sensing, 2008, 12(2): 23−28.
    [5]
    吴朝阳, 牛铮. 植物光化学植被指数对叶片生化组分参数的敏感性[J]. 中国科学院研究生院学报, 2008, 25(3):346−354.

    Wu C Y, Niu Z. Sensitivity study of photochemical reflectance index to leaf biochemical components[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2008, 25(3): 346−354.
    [6]
    Penuelas J, Filella I, Gamon J A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance[J]. New Phytologist, 1995, 131(3): 291−296. doi: 10.1111/j.1469-8137.1995.tb03064.x
    [7]
    宁艳玲, 张学文, 韩启金, 等. 基于改进的PRI方法对植被冠层叶绿素含量的反演[J]. 航天返回与遥感, 2014, 35(3):90−97.

    Ning Y L, Zhang X W, Han Q J, et al. Estimation of chlorophyll contents of canopy with advanced PRI method[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(3): 90−97.
    [8]
    吴朝阳, 牛铮, 汤泉. 叶片光化学植被指数(PRI)的修正及其敏感性分析[J]. 光谱学与光谱分析, 2008, 28(9):2014−2018.

    Wu C Y, Niu Z, Tang Q. Sensitivity study of a revised leaf photochemical reflectance index (PRI)[J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 2014−2018.
    [9]
    李师宇, 于颖, 范文义. 阳生叶光能利用率与光化学反射植被指数关系[J]. 林业科学, 2018, 54(5):177−184.

    Li S Y, Yu Y, Fan W Y. Relationship between the photochemical reflectance vegetation index and photosynthetic light use efficiency for sunlit leaves[J]. Scientia Silvae Sinicae, 2018, 54(5): 177−184.
    [10]
    Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2): 75−91. doi: 10.1016/0034-4257(90)90100-Z
    [11]
    薛云, 陈水森, 夏丽华, 等. 几个典型的叶片/冠层模型[J]. 西部林业科学, 2005, 34(1):70−73.

    Xue Y, Chen S S, Xia L H, et al. A brief introduction to several typical leaf /canopy models[J]. Journal of West China Forestry Science, 2005, 34(1): 70−73.
    [12]
    李海洋, 范文义, 于颖, 等. 基于Prospect, Liberty和Geosail模型的森林叶面积指数的反演[J]. 林业科学, 2011, 47(9):75−81.

    Li H Y, Fan W Y, Yu Y, et al. Leaf Area Index Retrieval Based on Prospect, Liberty and Geosail Models[J]. Scientia Silvae Sinicae, 2011, 47(9): 75−81.
    [13]
    Chen J M, Leblanc S G. A four-scale bidirectional reflectance model based on canopy architecture[J]. IEEE Transactions on Geoscience & Remote Sensing, 1997, 35(5): 1316−1337.
    [14]
    于颖, 范文义, 杨曦光. 三种植被冠层二向反射分布函数模型的比较[J]. 植物生态学报, 2012, 36(1):55−62. doi: 10.3724/SP.J.1258.2012.00055

    Yu Y, Fan W Y, Yang X G. Comparisons of three models for vegetation canopy bi-directional reflectance distribution function[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 55−62. doi: 10.3724/SP.J.1258.2012.00055
    [15]
    刘洋, 刘荣高, 刘斯亮, 等. 基于物理模型训练神经网络的作物叶面积指数遥感反演研究[J]. 地球信息科学学报, 2010, 12(3):426−435. doi: 10.3724/SP.J.1047.2010.00426

    Liu Y, Liu R G, Liu S L, et al. Estimation of crop LAI based on the neural network trained from physical model[J]. Journal of Geo-Information Science, 2010, 12(3): 426−435. doi: 10.3724/SP.J.1047.2010.00426
  • Related Articles

    [1]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [2]Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217
    [3]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
    [4]YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306
    [5]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [6]JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187
    [7]GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24.
    [8]DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19.
    [9]ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112.
    [10]ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45.
  • Cited by

    Periodical cited type(2)

    1. 包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
    2. 郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .

    Other cited types(4)

Catalog

    Article views (2144) PDF downloads (111) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return