• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
GAO Fei, LIN Wei, CUI Xiao-yang. Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China[J]. Journal of Beijing Forestry University, 2017, 39(2): 30-39. DOI: 10.13332/j.1000-1522.20160100
Citation: GAO Fei, LIN Wei, CUI Xiao-yang. Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China[J]. Journal of Beijing Forestry University, 2017, 39(2): 30-39. DOI: 10.13332/j.1000-1522.20160100

Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China

More Information
  • Received Date: March 21, 2016
  • Revised Date: May 29, 2016
  • Published Date: January 31, 2017
  • We explored the effects of sieving process on soil organic carbon (SOC) mineralization in broad-leaved secondary forest and virgin Korean pine forest in the Xiaoxing'an Mountains by using incubation method. The SOC mineralization rate, cumulative SOC mineralization (Cm), and the content of cool water extractable carbohydrate (CWEC) and hot water extractable carbohydrate (HWEC) before and after incubation were measured; the simultaneous reaction model was employed to estimate SOC mineralization parameters including soil easily mineralizable C (C1) and potentially mineralizable C (C0); the correlations between Cm, CWEC and HWEC were also analyzed. Results showed that both the mineralization rate and Cm of SOC in the broadleaved secondary forest were greater than the ones in the virgin Korean pine forest. Both the mineralization rate and Cm of SOC in two forests were increased by sieving process, and Cm in the soil sieved to 1 mm was increased more than that in the soil sieved to 2 mm. The sieving process had a decreasing impact on the mineralization rate of SOC in the two forest types as the incubation time increased, while it had little impact on C0 but did increase C1 by 49.09%-68.06% in 2 mm sieved soil and 91.03%-133.83% in 1 mm sieved soil. The sieving process increased the CWEC, but had no effect on the HWEC. Significantly positive correlations had been observed between the Cm and both the initial and changed contents of CWEC and HWEC, indicating that water extractable carbohydrate was the key factor for the mineralization of the organic carbon in soil, and that the loss of carbohydrates could largely explain the CO2 released during the soil organic carbon mineralization. In conclusion, the sieving process could destroy the soil structure, release some carbohydrates from soil aggregates, and increase the mineralization level of the organic carbon in soil.
  • [1]
    ALEXANDER M. Introduction to soil microbiology[J]. Soil Science, 1961, 125(5): 447. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91351
    [2]
    REY A, PETSIKOS C, JARVIS P G, et al. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 2005, 56(5): 589-599. doi: 10.1111/j.1365-2389.2004.00699.x
    [3]
    CHOW A T, TANJI K K, GAO S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology & Biochemistry, 2006, 38(3): 477-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=982238d16819eba5d8305984998df79e
    [4]
    CÔTEÁ L, BROWN S, PARÉ D, et al. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood[J]. Soil Biology and Biochemistry, 2000, 32(8): 1079-1090. https://www.sciencedirect.com/science/article/abs/pii/S0038071700000171
    [5]
    GIARDINA C P, RYAN M G, HUBBARD R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 2001, 65(4): 1272-1279. doi: 10.2136/sssaj2001.6541272x
    [6]
    REY A, PEGORARO E, JARVIS P G. Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST)[J]. European Journal of Soil Science, 2008, 59(6): 1049-1062. doi: 10.1111/j.1365-2389.2008.01065.x
    [7]
    HATTEN J A, ZABOWSKI D. Changes in soil organic matter pools and carbon mineralization as influenced by fire severity[J]. Soil Science Society America of Journal, 2009, 73(1): 262-273. doi: 10.2136/sssaj2007.0304
    [8]
    GRAVE R A, NICOLOSO R D S, CASSOL P C, et al. Short-term carbon dioxide emission under contrasting soil disturbance levels and organic amendments[J]. Soil and Tillage Research, 2015, 146: 184-192. doi: 10.1016/j.still.2014.10.010
    [9]
    邵月红, 潘剑君, 许信旺, 等.长白山森林土壤有机碳库大小及周转研究[J].水土保持学报, 2006, 20(6):99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024

    SHAO Y H, PAN J J, XU X W, et al. Determination of forest soil organic carbon pool sizes and turnover rates in Changbaishan[J]. Journal of Soil and Water Conservation, 2006, 20(6): 99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024
    [10]
    陈锦盈, 孙波, 李忠佩, 等.不同土地利用类型土壤有机碳各库大小及分解动态[J].水土保持学报, 2008, 22 (1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020

    CHEN J Y, SUN B, LI Z P, et al. Pool size of soil organic carbon and dynamics under different land use[J]. Journal of Soil and Water Conservation, 2008, 22(1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020
    [11]
    高菲, 姜航, 崔晓阳.小兴安岭两种森林类型土壤有机碳库及周转[J].应用生态学报, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001

    GAO F, JIANG H, CUI X Y. Soil organic carbon pools and their turnover under two different types of forest in the Xiao Xing'an Mountains[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001
    [12]
    SONG Y, SONG C, TAO B, et al. Short-term responses of soil enzyme activities and carbon mineralization to added nitrogen and litter in a freshwater marsh of Northeast China[J]. European Journal of Soil Biology, 2014, 61(5): 72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=277f31b9d9cdb626f4438f25f596db9a
    [13]
    FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology & Biochemistry, 2015, 81: 212-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a792c656cd468936dd11be4c895a60f
    [14]
    WHITMAN T, ENDERS A, LEHMANN J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants[J]. Soil Biology & Biochemistry, 2014, 73: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77b78db49f9c9909a9fafcf28e74f3de
    [15]
    DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology & Biochemistry, 2001, 33(12): 1599-1611.
    [16]
    PULLEMAN M M, MARINISSEN J C Y. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J]. Geoderma, 2004, 120(3-4): 273-282. doi: 10.1016/j.geoderma.2003.09.009
    [17]
    HASSINK J, BOUWMAN L A, ZWART K B, et al. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils[J]. Geoderma, 1993, 57(1-2): 105-128. doi: 10.1016/0016-7061(93)90150-J
    [18]
    CURTIN D, BEARE M H, SCOTT C L, et al. Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment[J]. Soil Science Society of America Journal, 2014, 78(3): 925-935. doi: 10.2136/sssaj2013.12.0510
    [19]
    STENGER R, BARKLE G F, BURGESS C P. Mineralisation of organic matter in intact versus sieved/refilled soil cores[J]. Soil Research, 2002, 40(1): 149-160. doi: 10.1071/SR01003
    [20]
    OORTS K, NICOLARDOT B, MERCKX R, et al. C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France[J]. Soil Biology & Biochemistry, 2006, 38(9): 2576-2586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1662eda6112fffde1f818192add4b236
    [21]
    陆志敏, 潘根兴, 郑聚锋, 等.不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力[J].生态环境, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056

    LU Z M, PAN G X, ZHENG J F, et al. Change in CO2 production potential by soil respiration from a paddy soil under aerobic incubation by using differently disturbed samples[J]. Ecology and Environment, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056
    [22]
    张焕军, 郁红艳, 丁维新.土壤碳水化合物的转化与累积研究进展[J].土壤学报, 2013, 50 (6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016

    ZHANG H J, YU H Y, DING W X. Progress in the study on transformation and accumulation of carbohydrates in soil[J]. Acta Pedologica Sinica, 2013, 50(6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016
    [23]
    YOUSEFI M, HAJABBASI M, SHARIATMADARI H. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran[J]. Soil & Tillage Research, 2008, 101(1): 57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc4f71da9a2126cf1cfbc2b4470700de
    [24]
    SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103. https://www.sciencedirect.com/science/article/abs/pii/S0038071700001796
    [25]
    张威, 解宏图, 何红波, 等.土壤碳水化合物的测定方法及其指示作用[J].应用生态学报, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035

    ZHANG W, XIE H T, HE H B, et al. Soil carbohydrates: their determination methods and indication functions[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035
    [26]
    LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528: 60-68. doi: 10.1038/nature16069
    [27]
    王薪琪, 高菲, 崔晓阳.凉水自然保护区森林演替序列土壤水溶性碳水化合物质量分数特征[J].东北林业大学学报, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024

    WANG X Q, GAO F, CUI X Y. Soil carbohydrates in coniferous and broad-leaved forest in Liangshui Nature Reserve[J]. Journal of Northeast Forestry University, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024
    [28]
    RIFFALDI R, SAVIOZZI A, LEVI-MINZI R. Carbon mineralization kinetics as influenced by soil properties[J]. Biology & Fertility of Soils, 1996, 22(4): 293-298. doi: 10.1007/BF00334572
    [29]
    JIANG P K, XU Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation[J]. Pedosphere, 2006, 16(4): 505-511. doi: 10.1016/S1002-0160(06)60081-7
    [30]
    LANDGRAF D, LEINWEBER P, MAKESCHIN F. Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils[J]. Journal of Plant Nutrition & Soil Science, 2006, 169(1): 76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0a41d89e89d09c4e2f4cd65d1e31c0d
    [31]
    GRANDY A S, ERICH M S, PORTER G A. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts[J]. Soil Biology & Biochemistry, 2000, 32(5): 725-727. https://www.sciencedirect.com/science/article/abs/pii/S0038071799002035
    [32]
    TOWNSEND A R, VOTOUSEK P M, TRUMBORE S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology, 1995, 76(3): 721-733. doi: 10.2307/1939339
    [33]
    PARTON W J, SCHIMEL D S, COLE C Ⅴ, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173-1179. doi: 10.2136/sssaj1987.03615995005100050015x
    [34]
    LI Z P, HAN C W, HAN F X. Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China[J]. Geoderma, 2010, 157(3-4): 206-213. doi: 10.1016/j.geoderma.2010.04.015
    [35]
    YANG L X, PAN J J, YUAN S F. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J]. Journal of Forestry Research, 2006, 17(1): 39-43. doi: 10.1007/s11676-006-0009-1
    [36]
    TURETSKY M R. Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past[J]. Ecosystems, 2004, 7(7): 740-750. doi: 10.1007/s10021-004-0247-z
    [37]
    FONTAINE S, BAROT S, BARRÉ P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277-280. doi: 10.1038/nature06275
    [38]
    REY A, JARVIS P. Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST)[J]. Global Change Biology, 2006, 12(10): 1894-1908. doi: 10.1111/j.1365-2486.2006.01230.x
    [39]
    王丹, 吕瑜良, 徐丽, 等.植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响[J].生态学报, 2013, 33 (19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051

    WANG D, LV Y L, XU L, et al. Impact of changes in vegetation types on soil C mineralization and associated temperature sensitivity in the Changbai Mountain forests of China[J]. Acta Ecologica Sinica, 2013, 33(19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051
    [40]
    CHEN C R, XU Z H. Analysis and behavior of soluble organic nitrogen in forest soils[J]. Journal of Soils & Sediments, 2008, 8(6): 363-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d3366516a458223782e2065bd046f92
    [41]
    LU S, CHEN C, ZHOU X, et al. Responses of soil dissolved organic matter to long-term plantations of three coniferous tree species[J]. Geoderma, 2012, 170(3): 136-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3cce6c1cf3417a3939836986a28dde8
    [42]
    WALLACE K L, MIDDLETON S, COOKⅠ J. Response of labile soil organic matter to changes in forest vegetation in subtropical regions[J]. Applied Soil Ecology, 2011, 47(3): 210-216. doi: 10.1016/j.apsoil.2010.12.004
    [43]
    XING S H, CHEN C R, ZHOU B Q, et al. Soil soluble organic nitrogen and microbial processes under adjacent coniferous and broadleaf plantation forests[J]. Journal of Soils and Sediments, 2010, 10: 1071-1081. doi: 10.1007/s11368-010-0191-9
    [44]
    周炎, 徐宪根, 阮宏华, 等.武夷山不同海拔高度土壤有机碳矿化速率的比较[J].生态学杂志, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010

    ZHOU Y, XU X G, RUAN H H, et al. Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of Southeast China[J]. Chinese Journal of Ecology, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010
    [45]
    YANG L, PAN J, SHAO Y, et al. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China[J]. Journal of Environmental Management, 2007, 85(3): 690-695. doi: 10.1016/j.jenvman.2006.09.011
    [46]
    高菲, 林维, 崔晓阳.小兴安岭两种森林类型土壤有机碳矿化的季节动态[J].应用生态学报, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002

    GAO F, LIN W, CUI X Y. Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002
    [47]
    NELSON P N, DICTOR M C, SOULAS G. Availability of organic carbon in soluble and particle-size fractions from a soil profile[J]. Soil Biology & Biochemistry, 1994, 26(11): 1549-1555. https://www.sciencedirect.com/science/article/abs/pii/0038071794900973
    [48]
    GHANI A, DEXTER M, PERROTT K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003, 35(9): 1231-1243. https://www.sciencedirect.com/science/article/abs/pii/S003807170300186X
    [49]
    CHODAK M, KHANNA P, BEESE F. Hot water extractable C and N in relation to microbiological properties of soils under beech forests[J]. Biology & Fertility of Soils, 2003, 39(2): 123-130.
    [50]
    KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology & Biochemistry, 2003, 35(8): 1129-1142. https://www.sciencedirect.com/science/article/abs/pii/S0038071703001652
  • Related Articles

    [1]Xie Chen, Zhang Yang. Effects of deep eutectic solvents pretreatment on performance of surface mineralized wood[J]. Journal of Beijing Forestry University, 2024, 46(7): 123-132. DOI: 10.12171/j.1000-1522.20240067
    [2]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]LI Hong-xiang, WANG Bin, WANG Yu-jie, WANG Yun-qi. Impact of different forest types on stability and organic carbon of soil aggregates[J]. Journal of Beijing Forestry University, 2016, 38(5): 84-91. DOI: 10.13332/j.1000-1522.20150427
    [5]REN Qing-sheng, XIN Ying, ZHAO Yu-sen, . Impact of severe burning on organic carbon and black carbon in soil aggregates in natural Larix gmelinii forest of Great Xing’an Mountains[J]. Journal of Beijing Forestry University, 2016, 38(2): 29-36. DOI: 10.13332/j.1000-1522.20150098
    [6]CHEN Li-xin, JIANG Yi, BU Fan, DUAN Wen-biao, MA Hai-juan. Effects of organic acid on organic phosphorus and mineralization of typical temperate forest soils[J]. Journal of Beijing Forestry University, 2014, 36(3): 75-82. DOI: 10.13332/j.cnki.jbfu.2014.03.011
    [7]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [8]DENG Hua-ping, WANG Guang-jun, GENG Geng. Response of nitrogen mineralization to litter addition and exclusion in soils of Cinnamomum camphora plantation.[J]. Journal of Beijing Forestry University, 2010, 32(3): 47-51.
    [9]YIN Zeng-fang, FAN Ru-wen. Phenomena of protoplasm components' selective autolyzing in the development of secondary phloem sieve elements in Populus deltoides[J]. Journal of Beijing Forestry University, 2007, 29(3): 1-7. DOI: 10.13332/j.1000-1522.2007.03.001
    [10]LÜ Zhao-lin, WANG Jun, ZHOU Jin-chi. Supercritical carbon dioxide extraction of terpenoids from needles of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2006, 28(4): 155-158.
  • Cited by

    Periodical cited type(2)

    1. 刘新坤,孙盛凯,段霄汉,崔冬梅,张婷婷,崔纪超,朱旭毅,韩惠芳. 耕作方式对土壤团聚体微生物及有机碳矿化的影响研究进展及展望. 中国农学通报. 2023(07): 88-94 .
    2. 荣慧,房焕,张中彬,蒋瑀霁,赵旭,单军,彭新华,孙波,周虎. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响. 土壤学报. 2022(02): 476-485 .

    Other cited types(1)

Catalog

    Article views (1350) PDF downloads (25) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return