Citation: | GAO Fei, LIN Wei, CUI Xiao-yang. Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China[J]. Journal of Beijing Forestry University, 2017, 39(2): 30-39. DOI: 10.13332/j.1000-1522.20160100 |
[1] |
ALEXANDER M. Introduction to soil microbiology[J]. Soil Science, 1961, 125(5): 447. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91351
|
[2] |
REY A, PETSIKOS C, JARVIS P G, et al. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 2005, 56(5): 589-599. doi: 10.1111/j.1365-2389.2004.00699.x
|
[3] |
CHOW A T, TANJI K K, GAO S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology & Biochemistry, 2006, 38(3): 477-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=982238d16819eba5d8305984998df79e
|
[4] |
CÔTEÁ L, BROWN S, PARÉ D, et al. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood[J]. Soil Biology and Biochemistry, 2000, 32(8): 1079-1090. https://www.sciencedirect.com/science/article/abs/pii/S0038071700000171
|
[5] |
GIARDINA C P, RYAN M G, HUBBARD R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 2001, 65(4): 1272-1279. doi: 10.2136/sssaj2001.6541272x
|
[6] |
REY A, PEGORARO E, JARVIS P G. Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST)[J]. European Journal of Soil Science, 2008, 59(6): 1049-1062. doi: 10.1111/j.1365-2389.2008.01065.x
|
[7] |
HATTEN J A, ZABOWSKI D. Changes in soil organic matter pools and carbon mineralization as influenced by fire severity[J]. Soil Science Society America of Journal, 2009, 73(1): 262-273. doi: 10.2136/sssaj2007.0304
|
[8] |
GRAVE R A, NICOLOSO R D S, CASSOL P C, et al. Short-term carbon dioxide emission under contrasting soil disturbance levels and organic amendments[J]. Soil and Tillage Research, 2015, 146: 184-192. doi: 10.1016/j.still.2014.10.010
|
[9] |
邵月红, 潘剑君, 许信旺, 等.长白山森林土壤有机碳库大小及周转研究[J].水土保持学报, 2006, 20(6):99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024
SHAO Y H, PAN J J, XU X W, et al. Determination of forest soil organic carbon pool sizes and turnover rates in Changbaishan[J]. Journal of Soil and Water Conservation, 2006, 20(6): 99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024
|
[10] |
陈锦盈, 孙波, 李忠佩, 等.不同土地利用类型土壤有机碳各库大小及分解动态[J].水土保持学报, 2008, 22 (1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020
CHEN J Y, SUN B, LI Z P, et al. Pool size of soil organic carbon and dynamics under different land use[J]. Journal of Soil and Water Conservation, 2008, 22(1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020
|
[11] |
高菲, 姜航, 崔晓阳.小兴安岭两种森林类型土壤有机碳库及周转[J].应用生态学报, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001
GAO F, JIANG H, CUI X Y. Soil organic carbon pools and their turnover under two different types of forest in the Xiao Xing'an Mountains[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001
|
[12] |
SONG Y, SONG C, TAO B, et al. Short-term responses of soil enzyme activities and carbon mineralization to added nitrogen and litter in a freshwater marsh of Northeast China[J]. European Journal of Soil Biology, 2014, 61(5): 72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=277f31b9d9cdb626f4438f25f596db9a
|
[13] |
FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology & Biochemistry, 2015, 81: 212-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a792c656cd468936dd11be4c895a60f
|
[14] |
WHITMAN T, ENDERS A, LEHMANN J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants[J]. Soil Biology & Biochemistry, 2014, 73: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77b78db49f9c9909a9fafcf28e74f3de
|
[15] |
DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology & Biochemistry, 2001, 33(12): 1599-1611.
|
[16] |
PULLEMAN M M, MARINISSEN J C Y. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J]. Geoderma, 2004, 120(3-4): 273-282. doi: 10.1016/j.geoderma.2003.09.009
|
[17] |
HASSINK J, BOUWMAN L A, ZWART K B, et al. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils[J]. Geoderma, 1993, 57(1-2): 105-128. doi: 10.1016/0016-7061(93)90150-J
|
[18] |
CURTIN D, BEARE M H, SCOTT C L, et al. Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment[J]. Soil Science Society of America Journal, 2014, 78(3): 925-935. doi: 10.2136/sssaj2013.12.0510
|
[19] |
STENGER R, BARKLE G F, BURGESS C P. Mineralisation of organic matter in intact versus sieved/refilled soil cores[J]. Soil Research, 2002, 40(1): 149-160. doi: 10.1071/SR01003
|
[20] |
OORTS K, NICOLARDOT B, MERCKX R, et al. C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France[J]. Soil Biology & Biochemistry, 2006, 38(9): 2576-2586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1662eda6112fffde1f818192add4b236
|
[21] |
陆志敏, 潘根兴, 郑聚锋, 等.不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力[J].生态环境, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056
LU Z M, PAN G X, ZHENG J F, et al. Change in CO2 production potential by soil respiration from a paddy soil under aerobic incubation by using differently disturbed samples[J]. Ecology and Environment, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056
|
[22] |
张焕军, 郁红艳, 丁维新.土壤碳水化合物的转化与累积研究进展[J].土壤学报, 2013, 50 (6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016
ZHANG H J, YU H Y, DING W X. Progress in the study on transformation and accumulation of carbohydrates in soil[J]. Acta Pedologica Sinica, 2013, 50(6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016
|
[23] |
YOUSEFI M, HAJABBASI M, SHARIATMADARI H. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran[J]. Soil & Tillage Research, 2008, 101(1): 57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc4f71da9a2126cf1cfbc2b4470700de
|
[24] |
SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103. https://www.sciencedirect.com/science/article/abs/pii/S0038071700001796
|
[25] |
张威, 解宏图, 何红波, 等.土壤碳水化合物的测定方法及其指示作用[J].应用生态学报, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035
ZHANG W, XIE H T, HE H B, et al. Soil carbohydrates: their determination methods and indication functions[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035
|
[26] |
LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528: 60-68. doi: 10.1038/nature16069
|
[27] |
王薪琪, 高菲, 崔晓阳.凉水自然保护区森林演替序列土壤水溶性碳水化合物质量分数特征[J].东北林业大学学报, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024
WANG X Q, GAO F, CUI X Y. Soil carbohydrates in coniferous and broad-leaved forest in Liangshui Nature Reserve[J]. Journal of Northeast Forestry University, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024
|
[28] |
RIFFALDI R, SAVIOZZI A, LEVI-MINZI R. Carbon mineralization kinetics as influenced by soil properties[J]. Biology & Fertility of Soils, 1996, 22(4): 293-298. doi: 10.1007/BF00334572
|
[29] |
JIANG P K, XU Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation[J]. Pedosphere, 2006, 16(4): 505-511. doi: 10.1016/S1002-0160(06)60081-7
|
[30] |
LANDGRAF D, LEINWEBER P, MAKESCHIN F. Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils[J]. Journal of Plant Nutrition & Soil Science, 2006, 169(1): 76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0a41d89e89d09c4e2f4cd65d1e31c0d
|
[31] |
GRANDY A S, ERICH M S, PORTER G A. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts[J]. Soil Biology & Biochemistry, 2000, 32(5): 725-727. https://www.sciencedirect.com/science/article/abs/pii/S0038071799002035
|
[32] |
TOWNSEND A R, VOTOUSEK P M, TRUMBORE S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology, 1995, 76(3): 721-733. doi: 10.2307/1939339
|
[33] |
PARTON W J, SCHIMEL D S, COLE C Ⅴ, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173-1179. doi: 10.2136/sssaj1987.03615995005100050015x
|
[34] |
LI Z P, HAN C W, HAN F X. Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China[J]. Geoderma, 2010, 157(3-4): 206-213. doi: 10.1016/j.geoderma.2010.04.015
|
[35] |
YANG L X, PAN J J, YUAN S F. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J]. Journal of Forestry Research, 2006, 17(1): 39-43. doi: 10.1007/s11676-006-0009-1
|
[36] |
TURETSKY M R. Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past[J]. Ecosystems, 2004, 7(7): 740-750. doi: 10.1007/s10021-004-0247-z
|
[37] |
FONTAINE S, BAROT S, BARRÉ P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277-280. doi: 10.1038/nature06275
|
[38] |
REY A, JARVIS P. Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST)[J]. Global Change Biology, 2006, 12(10): 1894-1908. doi: 10.1111/j.1365-2486.2006.01230.x
|
[39] |
王丹, 吕瑜良, 徐丽, 等.植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响[J].生态学报, 2013, 33 (19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051
WANG D, LV Y L, XU L, et al. Impact of changes in vegetation types on soil C mineralization and associated temperature sensitivity in the Changbai Mountain forests of China[J]. Acta Ecologica Sinica, 2013, 33(19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051
|
[40] |
CHEN C R, XU Z H. Analysis and behavior of soluble organic nitrogen in forest soils[J]. Journal of Soils & Sediments, 2008, 8(6): 363-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d3366516a458223782e2065bd046f92
|
[41] |
LU S, CHEN C, ZHOU X, et al. Responses of soil dissolved organic matter to long-term plantations of three coniferous tree species[J]. Geoderma, 2012, 170(3): 136-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3cce6c1cf3417a3939836986a28dde8
|
[42] |
WALLACE K L, MIDDLETON S, COOKⅠ J. Response of labile soil organic matter to changes in forest vegetation in subtropical regions[J]. Applied Soil Ecology, 2011, 47(3): 210-216. doi: 10.1016/j.apsoil.2010.12.004
|
[43] |
XING S H, CHEN C R, ZHOU B Q, et al. Soil soluble organic nitrogen and microbial processes under adjacent coniferous and broadleaf plantation forests[J]. Journal of Soils and Sediments, 2010, 10: 1071-1081. doi: 10.1007/s11368-010-0191-9
|
[44] |
周炎, 徐宪根, 阮宏华, 等.武夷山不同海拔高度土壤有机碳矿化速率的比较[J].生态学杂志, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010
ZHOU Y, XU X G, RUAN H H, et al. Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of Southeast China[J]. Chinese Journal of Ecology, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010
|
[45] |
YANG L, PAN J, SHAO Y, et al. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China[J]. Journal of Environmental Management, 2007, 85(3): 690-695. doi: 10.1016/j.jenvman.2006.09.011
|
[46] |
高菲, 林维, 崔晓阳.小兴安岭两种森林类型土壤有机碳矿化的季节动态[J].应用生态学报, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002
GAO F, LIN W, CUI X Y. Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002
|
[47] |
NELSON P N, DICTOR M C, SOULAS G. Availability of organic carbon in soluble and particle-size fractions from a soil profile[J]. Soil Biology & Biochemistry, 1994, 26(11): 1549-1555. https://www.sciencedirect.com/science/article/abs/pii/0038071794900973
|
[48] |
GHANI A, DEXTER M, PERROTT K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003, 35(9): 1231-1243. https://www.sciencedirect.com/science/article/abs/pii/S003807170300186X
|
[49] |
CHODAK M, KHANNA P, BEESE F. Hot water extractable C and N in relation to microbiological properties of soils under beech forests[J]. Biology & Fertility of Soils, 2003, 39(2): 123-130.
|
[50] |
KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology & Biochemistry, 2003, 35(8): 1129-1142. https://www.sciencedirect.com/science/article/abs/pii/S0038071703001652
|
1. |
刘新坤,孙盛凯,段霄汉,崔冬梅,张婷婷,崔纪超,朱旭毅,韩惠芳. 耕作方式对土壤团聚体微生物及有机碳矿化的影响研究进展及展望. 中国农学通报. 2023(07): 88-94 .
![]() | |
2. |
荣慧,房焕,张中彬,蒋瑀霁,赵旭,单军,彭新华,孙波,周虎. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响. 土壤学报. 2022(02): 476-485 .
![]() |