• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SONG Zhao-peng, LIANG Dong, HOU Ji-hua. Effects of nitrogen addition on the seedling biomass and its allocation of three Pinus tabuliformis provenances[J]. Journal of Beijing Forestry University, 2017, 39(8): 50-59. DOI: 10.13332/j.1000-1522.20160243
Citation: SONG Zhao-peng, LIANG Dong, HOU Ji-hua. Effects of nitrogen addition on the seedling biomass and its allocation of three Pinus tabuliformis provenances[J]. Journal of Beijing Forestry University, 2017, 39(8): 50-59. DOI: 10.13332/j.1000-1522.20160243

Effects of nitrogen addition on the seedling biomass and its allocation of three Pinus tabuliformis provenances

More Information
  • Received Date: August 28, 2016
  • Revised Date: January 12, 2017
  • Published Date: July 31, 2017
  • Nitrogen deposition is much heavier in the north of China, which exerts a great influence on forest ecological system dynamics. To improve our understanding about the effects of elevating N deposition on the growth and the biomass allocation pattern of Pinus tabuliformis seedlings, a nitrogen addition experiment with three provenances of P. tabuliformis seedlings was carried out on Lingkong Mountain in Shanxi Province, northern China. Three-year-old P. tabuliformis seedlings of three different provenances, Beijing (BJ), Shanxi (SX) and Neimenggu (NMG), were planted in a common garden, and five nitrogen treatments with three replications were designed, including: control (N0, 0kg/(hm2·a), in N, similarly hereinafter), low nitrogen level(N1, 15kg/(hm2·a)), middle nitrogen level (N2, 25kg/(hm2·a)), high nitrogen level (N3, 50kg/(hm2·a)) and the supersaturated nitrogen level (N4, 150kg/(hm2·a)). The base diameter, plant height, monthly growth amount, biomass and the biomass allocation pattern of P. tabuliformis seedlings under different nitrogen addition levels were measured. The results showed that: 1) Adding nitrogen had remarkable effect on plant height for BJ provenance seedlings (P < 0.05), but there was no significant impact on the average base diameter. The base diameters of SX and NMG provenance seedlings were influenced by nitrogen addition treatments, but these effects were not significant. 2) The height growth of BJ provenance seedlings increased under adding nitrogen treatments, while their base diameter growth decreased, but these effects were not significant; The month base diameter growth of NMG provenance seedling decreased significantly under the N4 treatments (P < 0.05). 3) The growth of BJ provenance was affected by nitrogen addition, with dry biomass, dry biomass of the whole plant, the aboveground part and stem increasing significantly under the N1 nitrogen treatment (P < 0.05). Leaf dry biomass of SX provenance seedlings decreased significantly under different nitrogen addition treatments, while there was no significant changes of the whole plant biomass of NMG provenance seedling. 4) Leaf mass ratio of SX provenance seedlings increased significantly under the N3 level nitrogen addition treatments (P < 0.05); The root mass ratio of NMG provenance seedlings reduced significantly with the incensement of concentration of nitrogen addition. while stem mass ratio showed inversed trend; 5) The analysis of sources of variation showed that the variation of base diameter was related closely with both nitrogen treatment and provenance, but those of month growth of base diameter, leaf mass ratio and root-leaf ratio were only associated with the provenance. In conclusion, continuous nitrogen added has affected the internal stability of Pinus tabuliformis populations.
  • [1]
    MATTHEWS E. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia[J]. Global Biogeochemical Cycles, 1994, 8(4):411-439. doi: 10.1029/94GB01906
    [2]
    LOVETT G M, GOODALE C L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest[J]. Ecosystems, 2011, 14(4):615-631. doi: 10.1007/s10021-011-9432-z
    [3]
    XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J].New Phytologist, 2008, 179(2): 428-439. doi: 10.1111/j.1469-8137.2008.02488.x
    [4]
    CROWLEY K F, MCNEIL B E, LOVETT G M, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?[J]. Ecosystems, 2012, 15(6):940-957. doi: 10.1007/s10021-012-9550-2
    [5]
    ZHAO J, WANG F, LI J, et al. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest[J]. Soil Biology and Biochemistry, 2014, 75:1-10. doi: 10.1016/j.soilbio.2014.03.019
    [6]
    TEMPLER P H, WEATHERS K C, LINDSEY A, et al. Atmospheric inputs and nitrogen saturation status in and adjacent to Class Ⅰ wilderness areas of the northeastern US[J]. Oecologia, 2015, 177(1):5-15. doi: 10.1007/s00442-014-3121-5
    [7]
    ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems[J]. BioScience, 1998, 48 (11):921-934. doi: 10.2307/1313296
    [8]
    TATE R L. Nitrogen in terrestrial ecosystems questions of productivity, vegetational changes, and ecosystem stability[J]. Soil Science, 1992, 154(6):508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/095968369200200215
    [9]
    MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3(3):238-253. doi: 10.1007/s100210000023
    [10]
    MAGILL A H, ABER J D, HENDRICKS J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition[J]. Ecological Applications, 1997, 7(2):402-415. doi: 10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2
    [11]
    方运霆, 莫江明, 周国逸, 等.鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应[J].热带亚热带植物学报, 2005, 13(3):198-204. doi: 10.3969/j.issn.1005-3395.2005.03.002

    FANG Y T, MO J M, ZHOU G Y, et al. Response of diameter at breast height increment to N additions in forests of Dinghushan Biosphere Reserve[J]. Journal of Tropical and Subtropical Botany, 2005, 13(3):198-204. doi: 10.3969/j.issn.1005-3395.2005.03.002
    [12]
    NIU S, WU M, HAN Y I, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe[J].Global Change Biology, 2010, 16(1):144-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2009.01894.x
    [13]
    张蕊, 王艺, 金国庆, 等.施氮对木荷3个种源幼苗根系发育和氮磷效率的影响[J].生态学报, 2013, 33(12):3611-3621. http://d.old.wanfangdata.com.cn/Periodical/stxb201312006

    ZHANG R, WANG Y, JIN G Q, et al. Nitrogen addition affects root growth, phosphorus and nitrogen efficiency of three provenances of Schima superba in barren soil[J]. Acta Ecological Sinica, 2013, 33(12):3611-3621. http://d.old.wanfangdata.com.cn/Periodical/stxb201312006
    [14]
    THOMAS R Q, ZAEHLE S, TEMPLER P H, et al. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations[J]. Global Change Biology, 2013, 19(10):2986-2998. doi: 10.1111/gcb.12281
    [15]
    THOMAS R Q, BROOKSHIRE E N, GERBER S. Nitrogen limitation on land: how can it occur in earth system models?[J]. Global Change Biology, 2015, 21(5):1777-1793. doi: 10.1111/gcb.12813
    [16]
    NIU S, CLASSEN A T, DUKES J S, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle[J]. Ecology Letters, 2016, 19(6):697-709. doi: 10.1111/ele.12591
    [17]
    HÄTTENSCHWILER S, KÖRNER C.Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition[J]. Oecologia, 1997, 113(1):104-114. doi: 10.1007/s004420050358
    [18]
    PERSSON H, AHLSTRÖM K, CLEMENSSON-LINDELL A. Nitrogen addition and removal at Gårdsjön: effects on fine-root growth and fine-root chemistry[J].Forest Ecology and Management, 1998, 101(1): 199-205. https://www.sciencedirect.com/science/article/pii/S0378112797001369
    [19]
    MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2007.01503.x
    [20]
    SCHULZE E D. Air pollution and forest decline in a spruce(Picea abies)forest[J].Science, 1989, 244:776-783. doi: 10.1126/science.244.4906.776
    [21]
    李德军, 莫江明, 方运霆, 等.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J].植物生态学报, 2005, 29(4):543-549. doi: 10.3321/j.issn:1005-264X.2005.04.004

    LI D J, MO J M, FANG Y T, et al. Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical china[J], Acta Phytoecologica Sinica, 2005, 29(4):543-549. doi: 10.3321/j.issn:1005-264X.2005.04.004
    [22]
    VAN DIJK H F G, DE LOUW M H J, ROELOFS J G M, et al. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse (Part Ⅱ): effects on the trees[J].Environmental Pollution, 1990, 63(1):41-59. doi: 10.1016/0269-7491(90)90102-I
    [23]
    陈云明, 梁一民.黄土高原林草植被建设的地带性特征[J].植物生态学报, 2002, 26(3):339-345. doi: 10.3321/j.issn:1005-264X.2002.03.013

    CHEN Y M, LIANG Y M. The zonal character of vegetation construction on loess plateau[J]. Acta Phytoecologica Sinica, 2002, 26(3):339-345. doi: 10.3321/j.issn:1005-264X.2002.03.013
    [24]
    徐化成, 李长喜, 唐谦.北京地区油松生态型变异的研究[J].林业科学研究, 1992, 5(2):142-148. http://www.cnki.com.cn/Article/CJFDTotal-LYKX199202002.htm

    XU H C, LI C X, TANG Q. Pinus tabuliformis variation of ecological research in Beijing[J]. Forest Research, 1992, 5(2):142-148. http://www.cnki.com.cn/Article/CJFDTotal-LYKX199202002.htm
    [25]
    LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China: an overview[J].Environmental Pollution, 2011, 159(10):2251-2264. doi: 10.1016/j.envpol.2010.08.002
    [26]
    姬明飞.中国主要森林树种功能性状变化规律以及驱动力的研究[D].兰州: 兰州大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012479948.htm

    JI M F.The patterns and driving forces of plant functional traits in the forest biomes of China[D].Lanzhou: Lanzhou University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012479948.htm
    [27]
    汪金松, 模拟氮沉降对暖温带油松林土壤碳循环过程的影响[D].北京: 北京林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213993.htm

    WANG J S.Effects of simulated nitrogen deposition on soil carbon cycling processes of Pinus tabuliformis forests in warm temperate of China[D].Beijing: Beijing Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213993.htm
    [28]
    朱建奎.山西太岳山地区森林土壤理化性状研究[D].北京: 北京林业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161686.htm

    ZHU J K.Study on physico-chemical characteristics of forest soil on Taiyue Mountain in Shanxi Province[D].Beijing: Beijing Forestry University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161686.htm
    [29]
    刘保新.生长季山西太岳山油松人工林土壤呼吸速率研究[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011135022.htm

    LIU B X.A study on the soil respiration rate of Pinus tabuliformis plantation in the growing season in Taiyue Mountain, Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011135022.htm
    [30]
    蒋思思, 魏丽萍, 杨松, 等.不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J].生态学报, 2015, 35(21):1-11. http://d.old.wanfangdata.com.cn/Periodical/stxb201521016

    JIANG S S, WEI L P, YANG S, et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabuliformis Carr. seedings[J]. Acta Ecological Sinica, 2015, 35(21):1-11. http://d.old.wanfangdata.com.cn/Periodical/stxb201521016
    [31]
    ELBERSE I A M, VAN DAMME J M M, VAN TIENDEREN P H. Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation[J]. Journal of Ecology, 2003, 91(3):371-382. doi: 10.1046/j.1365-2745.2003.00776.x
    [32]
    BAUER G A, BAZZAZ F A, MINOCHA R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States[J]. Forest Ecology and Management, 2004, 196(1):173-186. doi: 10.1016/j.foreco.2004.03.032
    [33]
    LU X, MAO Q, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12):3790-3801. doi: 10.1111/gcb.12665
    [34]
    MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196(1):7-28. doi: 10.1016/j.foreco.2004.03.033
    [35]
    NAKAJI T, FUKAMI M, DOKIYA Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees, 2001, 15(8):453-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70b1264427614269adf3e71da1343734
    [36]
    肖迪, 王晓洁, 张凯, 等.模拟氮沉降对五角枫幼苗生长的影响[J].北京林业大学学报, 2015, 37(10):50-57. doi: 10.13332/j.1000-1522.20150079

    XIAO D, WANG X J, ZHANG K, et al. Effects of simulated nitrogen deposition on growth of Acer mono seedings[J]. Journal of Beijing Forestry University, 2015, 37(10):50-57. doi: 10.13332/j.1000-1522.20150079
    [37]
    顾峰雪, 黄玫, 张远东, 等. 1961—2010年中国区域氮沉降时空格局模拟研究[J].生态学报, 2016, 36(12):3591-3600.

    GU F X, HUANG M, ZAHNG Y D, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010[J]. Acta Ecologica Sinica, 2016, 36(12):3591-3600.
    [38]
    SANTIAGO L S, WRIGHT S J, HARMS K E, et al. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition[J]. Journal of Ecology, 2012, 100(2):309-316. doi: 10.1111/j.1365-2745.2011.01904.x
    [39]
    汪金松, 赵秀海, 张春雨, 等.模拟氮沉降对油松林土壤有机碳和全氮的影响[J].北京林业大学学报, 2016, 38(10): 88-94. doi: 10.13332/j.1000-1522.20140294

    WANG J S, ZHAO X H, ZHANG C Y, et al.Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2016, 38(10):88-94. doi: 10.13332/j.1000-1522.20140294
    [40]
    汪金松, 王晨, 赵秀海, 等.模拟氮沉降对油松林单一及混合叶凋落物分解的影响[J].北京林业大学学报, 2015, 37(10): 14-21. doi: 10.13332/j.1000-1522.20140292

    WANG J S, WANG C, ZHAO X H, et al. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabuliformis[J].Journal of Beijing Forestry University, 2015, 37(10):14-21. doi: 10.13332/j.1000-1522.20140292
    [41]
    POORTER H, NAGEL O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Functional Plant Biology, 2000, 27(12):1191-1191. doi: 10.1071/PP99173_CO
    [42]
    羊留冬, 王根绪, 杨阳, 等.峨眉冷杉幼苗叶片功能特征及其N, P化学计量比对模拟大气氮沉降的响应[J].生态学杂志, 2012, 31(1):44-50. http://d.old.wanfangdata.com.cn/Periodical/stxzz201201007

    YANG L D, WANG G X, YANG Y, et al. Responses of leaf functional traits and nitrogen and phosphorus stoichiometry in Abies Fabiri seedings in Gongga Mountain to simulated nitrogen deposition[J]. Chinese Journal of Ecology, 2012, 31(1):44-50. http://d.old.wanfangdata.com.cn/Periodical/stxzz201201007
    [43]
    FLVCKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification[J]. Environmental Pollution, 1998, 102(1):69-76. doi: 10.1016/S0269-7491(98)80017-1
    [44]
    段洪浪, 刘菊秀, 邓琦, 等. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响[J].植物生态学报, 2009, 33(3):570-579. doi: 10.3773/j.issn.1005-264x.2009.03.016

    DUAN H L, LIU J X, DEGN Q, et al. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study[J]. Chinese Journal of Plant Ecology, 2009, 33(3):570-579. doi: 10.3773/j.issn.1005-264x.2009.03.016
    [45]
    JOHANSSON M. The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization of Calluna vulgaris (L.) Hull from a Danish heathland[J]. Oecologia, 2000, 123(3):418-424. doi: 10.1007/s004420051029
    [46]
    WALCH-LIU P, IVANOV I I, FILLEUR S, et al. Nitrogen regulation of root branching[J]. Annals of Botany, 2006, 97(5): 875-881. doi: 10.1093/aob/mcj601
    [47]
    ZHANG H, JENNINGS A, BARLOW P W, et al. Dual pathways for regulation of root branching by nitrate[J]. Proceedings of the National Academy of Sciences, 1999, 96(11):6529-6534. doi: 10.1073/pnas.96.11.6529
    [48]
    杜启燃.不同种源栓皮栎幼苗对CO2增加和N增加的生理生态特性响应[D].武汉: 华中农业大学, 2013: 1-81. http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336108.htm

    DU Q R.The eco-physiological response of different source Quercus variabilis seedlings to increased atmospheric CO2 and N addition[D].Wuhan: Huazhong Agricultural University, 2013: 1-81. http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336108.htm
  • Cited by

    Periodical cited type(28)

    1. 宋歌,邓雅楠,张春文,叶懿,严善春. 蒙古栎5-9月叶片精油化学成分及其抗氧化活性分析. 山东林业科技. 2024(05): 34-39+59 .
    2. 曾燕茹,陈少美,徐陞梅. PK型紫苏叶精油GC-MS成分分析及抗氧化活性研究. 福建农业科技. 2024(09): 44-50 .
    3. 曾琼瑶,张鹏丽,常仁杰,丁仡,王超琴,苏云平,刘嘉娜,李源栋. 超临界萃取结合分子蒸馏提取苍山冷杉油及其成分分析. 中国食品添加剂. 2023(07): 277-285 .
    4. 兰宇铭. 基于CiteSpace的国内红松研究趋势与热点分析. 辽宁林业科技. 2022(01): 33-39 .
    5. 刘汇,陈健龙,郭丽娜,金长雪,王蕾,金桂花,李华. 朝药松毛质量标准的研究. 中国民族医药杂志. 2022(02): 45-47 .
    6. 黄仁坤,卢玠桦,张衍,罗淑娟,胡照琳,吴宇馨. 中西医结合治疗青年雄激素源性脱发湿热熏蒸证疗效观察. 广西中医药. 2022(02): 32-34 .
    7. 类程月,周晓琴,王琪,郭亭好,李德海,杨凯. 松树精油成分分析及其生理功能的研究进展. 食品工业科技. 2022(11): 398-405 .
    8. 赵海桃,吴小杰,钟明旭,邱隽蒙,石统帅,符群. 细叶小檗不同生长部位生物碱抑菌活性研究. 北京林业大学学报. 2022(07): 126-134 . 本站查看
    9. 王雪薇,李德海. 红松不同部位精油的成分分析及抑菌活性. 中南林业科技大学学报. 2021(02): 153-161+170 .
    10. 王梁凤,李慧婷,陈青垚,柳小莉,徐杰,罗晶,杨明,张小飞,王芳. 中药挥发油抗菌作用的研究进展. 中国中药杂志. 2021(05): 1026-1033 .
    11. 潘晓丽,王凤娟,张娜,郭庆启. 不同提取方法对红松籽油提取效果及功能性质的影响. 北京林业大学学报. 2021(01): 127-135 . 本站查看
    12. 肖川,仲维锋,崔少宁,谢玮. 超声辅助提取黑松松针多糖的工艺优化及其抑菌性研究. 粮食与油脂. 2020(04): 92-96 .
    13. 胡妍君,秦怡航,刘晓庚,杨奕明,周志伟,韦清. 基于文献计量和可视化分析看松针利用研究的现状与发展前景. 粮食科技与经济. 2020(02): 129-134 .
    14. 张晓月,杨晓芳,肖培云,杨永寿. 超临界CO_2萃取不同产地云南松松针挥发油及其GC-MS分析. 中国实验方剂学杂志. 2020(11): 161-169 .
    15. 韩子晗,孙尧,杨富雅,高冷. 林蛙卵油的提取、成分分析及抗氧化活性研究. 食品工业科技. 2020(11): 60-65 .
    16. 孙建政,孙国君. 松针精油的化学成分、生理功能及其在动物生产中的应用前景. 现代畜牧兽医. 2020(07): 55-59 .
    17. 李晓娇,李悦,董锦,张化艳,宋志姣. 云南松针精油的提取及抗氧化活性研究. 中国食品添加剂. 2020(07): 27-35 .
    18. 张俊顺,骆嘉原,姜喆卉,包怡红,包洪涛. 连翘苷的提取工艺优化及其抑菌活性. 现代食品科技. 2020(07): 193-201+104 .
    19. 包怡红,张俊顺,符群,张海婷. 细叶小檗果小檗碱抑菌性能及机理. 食品科学. 2020(17): 29-34 .
    20. 李建芳,周枫,张阳阳,陈利军,刘坤峰. SDE葫芦巴叶挥发性提取物GC-MS分析与抗氧化活性研究. 食品研究与开发. 2020(21): 154-160 .
    21. 赵学丽,舒钰,高子为. 水蒸气蒸馏法提取红松松针挥发油研究. 安徽农业科学. 2019(02): 167-168+175 .
    22. 赵学丽,舒钰,王丹. 红松松针挥发油氨基酸组分及化合物成分. 东北林业大学学报. 2019(06): 40-44 .
    23. 段广莹,李浩,丁鹏,宋泽和,贺喜,范志勇. 松针粉的生物学作用及其在畜禽生产中的应用. 饲料研究. 2019(05): 126-128 .
    24. 龚婷,张敏,王海珠,宗学凤,廖林正. 大叶茜草精油挥发性物质抑菌及抗氧化活性研究. 西南师范大学学报(自然科学版). 2019(06): 54-59 .
    25. Sitong Zhang,Ligang Zhang,Lu Wang,Yuhong Zhao. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different Korean pine(Pinus koraiensis) varieties. Journal of Forestry Research. 2019(05): 1743-1754 .
    26. 王凤娟,童新雨,夏晓雨,符群,郭庆启. 模拟不同烹饪温度对红松籽油品质的影响及主成分分析. 北京林业大学学报. 2019(11): 116-124 . 本站查看
    27. 郝金伟,张国锋,容井容,赵晶,时东杰. 松针精油的提取及开发利用的研究进展. 食品安全质量检测学报. 2018(23): 6118-6123 .
    28. 胡文杰,李阁,李冠喜. 马尾松松针挥发油化学成分及抗氧化活性研究. 中国粮油学报. 2018(12): 42-48 .

    Other cited types(19)

Catalog

    Article views (2526) PDF downloads (42) Cited by(47)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return