• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
JIA Na, LIU Man-man, HUA Jun, MAO Lei, BAI Xue. Static analysis of finite element model of wood flooring lock based on 3D scanning[J]. Journal of Beijing Forestry University, 2017, 39(11): 98-105. DOI: 10.13332/j.1000-1522.20170223
Citation: JIA Na, LIU Man-man, HUA Jun, MAO Lei, BAI Xue. Static analysis of finite element model of wood flooring lock based on 3D scanning[J]. Journal of Beijing Forestry University, 2017, 39(11): 98-105. DOI: 10.13332/j.1000-1522.20170223

Static analysis of finite element model of wood flooring lock based on 3D scanning

More Information
  • Received Date: June 25, 2017
  • Revised Date: September 24, 2017
  • Published Date: October 31, 2017
  • This study aims to investigate the effects of different forms of locks on the mechanical properties of wood flooring, in which the lock plays a key role to the connection. The laminate flooring lock structure was investigated, and the static characteristics of finite element model of the lock structure was taken as the research objective. By means of 3D scanner, the 3D point cloud data of 12 kinds of typical lock structures including embedded lock and body lock were acquired. The 3D solid model of lock structure was reversely reconstructed, and the characteristics of lock structure were analyzed to determine the structure eigenvalues affecting the mechanical properties of the lock. The finite element software ANSYS was used to analyze the finite element models of the total deformation, the equivalent stress, the equivalent strain under bending or tensile loads, and to study the static characteristics of the wood flooring lock. The results showed that the mechanical properties of the lock were most affected by locking junction length, the tenon/groove (convex/concave) length and joint surface shape. The embedded lock performed better overall properties than the body lock, as it was less affected by the shape of the lock but most affected by the shape of the locking element. In a body lock structure, the shape of a large arc lock section is beneficial to the improve the mechanical properties. The study provides a new approach to design, optimize and test the flooring lock.
  • [1]
    胡丽娟.我国地板锁扣技术打破国外垄断[N].中国技术市场报, 2010-01-12(001).

    HU L J. Our country floor locking technology breaks foreign monopoly[N]. China Technology Market Newspaper, 2010-01-12 (001).
    [2]
    王忠明, 马文君, 龙三群.木地板锁扣技术国际专利分析[J].木材工业, 2015, 29(1):18-23. doi: 10.3969/j.issn.1001-8654.2015.01.004

    WANG Z M, MA W J, LONG S Q. Patent analysis on wood flooring locking technology[J]. China Wood Industry, 2015, 29(1): 18-23. doi: 10.3969/j.issn.1001-8654.2015.01.004
    [3]
    MORIAU S S G, CAPPELLE M G M, THIERS B P J. Method of making floor panels with edge connectors: US7644557[P]. 2010-07-19.
    [4]
    MORIAU S S G, CAPPELLE M G M, THIERS B P J. Floor panels with edge connectors: US7661238[P]. 2016-03-22.
    [5]
    PERVAN D, PÅLSSON A. Mechanical locking of flooring panels with a flexible bristle tongue: US8033074B2[P]. 2011-10-11.
    [6]
    VALINGE INNOVATION A B. Mechanical locking of flooring panels with a flexible bristle tongue: US864042B2[P]. 2014.
    [7]
    PERVAN D, HAKANSSON N, NYGREN P. Mechanical locking of floor panels with a flexible tongue: US8381477B2[P]. 2013-02-26.
    [8]
    PERVAN D, PALSSON A. Mechanical locking of floor panels with a flexible bristle tongue: US9382716B2[P]. 2016-07-05.
    [9]
    李欣, 陈斌.我国木地板锁扣技术专利分析[J].建材发展导向, 2015, 13(4):29-31. doi: 10.3969/j.issn.1672-1675.2015.04.018

    LI X, CHEN B. Patent analysis of wooden floor locking technology in our country[J]. Development Orientation of Building Materials, 2015, 13(4): 29-31. doi: 10.3969/j.issn.1672-1675.2015.04.018
    [10]
    深圳市燕加隆实业发展有限公司.地板块、地板系统及铺设地板系统的方法: 200680054224. 4[P]. 2010-05-12.

    SHEN ZHEN YAN JIA LONG INDUSTRIAL DEVELOPMENT CO. LTD. Floor block, floor system and method for laying floor system: 200680054224. 4[P]. 2010-05-12.
    [11]
    周江龙, 姜志华.强化木地板锁扣结合力测试方法探讨[J].中国人造板, 2010, 17(2):29-30. doi: 10.3969/j.issn.1673-5064.2010.02.010

    ZHOU J L, JIANG Z H. Test method for joint strength of laminate flooring[J]. China Wood-Based Panels, 2010, 17(2): 29-30. doi: 10.3969/j.issn.1673-5064.2010.02.010
    [12]
    陈祎, 熊猛.三维扫描技术在整形外科中的临床应用研究进展[J].东南大学学报(医学版), 2015, 34(4):670-673. doi: 10.3969/j.issn.1671-6264.2015.04.039

    CHEN H, XIONG M. Progress of clinical application of three dimensional scanning technique in plastic surgery[J]. Journal of Southeast University (Medical Science Edition), 2015, 34(4): 670-673. doi: 10.3969/j.issn.1671-6264.2015.04.039
    [13]
    程小龙, 程效军, 贾东峰, 等.三维激光扫描技术在考古发掘中的应用[J].工程勘察, 2015, 43(8):79-86. http://d.old.wanfangdata.com.cn/Periodical/gckc201508016

    CHENG X L, CHENG X J, JIA D F, et al. The application of 3D laser scanning in archaeological exploration[J].Geotechnical Investigation & Surveying, 2015, 43(8): 79-86. http://d.old.wanfangdata.com.cn/Periodical/gckc201508016
    [14]
    张海煊, 陈云霞, 方涛, 等.三维扫描技术在陶瓷制品检验鉴证和修复仿制中的应用研究[J].中国陶瓷, 2016, 52(9):45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtc201609009

    ZHANG H X, CHEN Y X, FANG T, et al. Research on application of 3D scanning technology for ceramic products identification, imitation and restoration[J]. China Ceramics, 2016, 52(9): 45-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtc201609009
    [15]
    马鹏飞, 梁宁博, 李学飞, 等.三维激光扫描技术在建构筑物安全检测中的应用[C]//第四届全国工程结构安全检测鉴定与加固修复研讨会论文集.北京: 国家工业建构筑物质量安全监督检验中心, 国家工业建筑诊断与改造工程技术研究中心, 2015: 4.

    MA P F, LIANG N B, LI X F, et al. Application of three dimensional laser scanning technology in building structure safety inspection[C]//Proceedings of the fourth national symposium on safety inspection, identification and reinforcement of structures. Beijing: National Industrial Construction Quality Safety Supervision and Inspection Center, National Industrial Buidding Diagnosis and Reconstruction Engineering Technology Research Center, 2015: 4.
    [16]
    宋灵香.三维影视模型制作方法浅析[J].信息化建设, 2016(1):246-247. http://d.old.wanfangdata.com.cn/Periodical/msjyyj201214081

    SONG L X. Analysis of three dimensional video model making method[J]. Information Construction, 2016 (1): 246-247. http://d.old.wanfangdata.com.cn/Periodical/msjyyj201214081
    [17]
    俱英翠, 刘锡, 万曙雄.三维扫描技术在风电铸件尺寸检测中的应用[J].现代铸铁, 2015, 35(3):86-89. doi: 10.3969/j.issn.1003-8345.2015.03.016

    JU Y C, LIU X, WAN S X. Application of 3D scanning technique in dimension inspection of wind power castings[J].Modern Cast Iron, 2015, 35(3): 86-89. doi: 10.3969/j.issn.1003-8345.2015.03.016
    [18]
    张绍群, 花军, 许威, 等.基于三维扫描技术的木材断口分形特征[J].林业科学, 2014, 50(7):138-142. http://d.old.wanfangdata.com.cn/Periodical/lykx201407019

    ZHANG S Q, HUA J, XU W, et al. Fractal feature of wood fracture with 3D scanning technologies[J]. Scientia Silvae Sinicae, 2014, 50(7): 138-142. http://d.old.wanfangdata.com.cn/Periodical/lykx201407019
    [19]
    杨永泉, 张世超, 夏振佳.三维扫描技术在铸件新产品开发中的应用[J].机械工业标准化与质量, 2013(3):37-41. doi: 10.3969/j.issn.1007-6905.2013.03.011

    YANG Y Q, ZHANG S C, XIA Z J. The application of 3D scanning technology in the casting process of new product development[J]. Machinery Industry Standardization & Quality, 2013(3): 37-41. doi: 10.3969/j.issn.1007-6905.2013.03.011
    [20]
    蒋丰璘.有限元分析在37.00R57巨型工程机械子午线轮胎结构优化中的应用[J].轮胎工业, 2016, 36(3):147-149. doi: 10.3969/j.issn.1006-8171.2016.03.004

    JIANG F L. Application of FEA in structure optimization of 37. 00R57 giant off-the-road radial tire[J].Tire Industry, 2016, 36(3): 147-149. doi: 10.3969/j.issn.1006-8171.2016.03.004
    [21]
    董凯骏.基于SiPESC的隐式非线性有限元程序框架研发[D].大连: 大连理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016217272.htm

    DONG K J. Development of implicit nonlinear finite element analysis framework based on SiPESC[D]. Dalian: Dalian University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016217272.htm
    [22]
    高鑫.玻璃纤维增强复合材料加工机理研究及有限元分析[D].镇江: 江苏科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10289-1015996974.htm

    GAO X. Glass fiber reinforced composite materials processing mechanism research and finite element analysis[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10289-1015996974.htm
    [23]
    闫海龙.高强方钢管高强混凝土轴压短柱力学性能非线性有限元分析[D].沈阳: 沈阳建筑大学, 2014.

    YAN H L. The nonlinear finite element analysis on mechanical properties of high-strength CFST under axial compression[D]. Shenyang: Shenyang Jianzhu University, 2014.
    [24]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.浸渍纸层压木质地板: GB/T18102—2007[S].北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Laminate flooring: GB/T18102—2007 [S]. Beijing: China Standard Press, 2008.
    [25]
    喻永巽.ANSYS Workbench的应用现状及分析[J].机电工程技术, 2014, 43(9):138-140. doi: 10.3969/j.issn.1009-9492.2014.09.038

    YU Y X. Current situation and analysis of ANSYS workbench[J]. Mechanical & Electrical Engineering Technology, 2014, 43(9): 138-140. doi: 10.3969/j.issn.1009-9492.2014.09.038
    [26]
    蔡力平, 余松宝, 郭希强.板式家具结构强度分析[J].林业科学, 1991, 27(1):91-96. http://d.old.wanfangdata.com.cn/Thesis/Y2992501

    CAI L P, YU S B, GUO X Q. Ananalysis of the strength case furniture[J]. Scientia Silvae Sinicae, 1991, 27(1): 91-96. http://d.old.wanfangdata.com.cn/Thesis/Y2992501
    [27]
    W. 沃伯肯.国际塑料手册[M].4版.北京:化学工业出版社, 1998.

    WOBOKEN W. International plastics handbook [M]. 4th ed. Beijing: Chemical Industry Press, 1998.
    [28]
    张帆.基于有限元法的实木框架式家具结构力学研究[D].北京: 北京林业大学, 2012.

    ZHANG F. Research on structural mechanics of solid wood frame work furniture based on finite element method [D]. Beijing: Beijing Forestry University, 2012.
    [29]
    王得胜, 程建业, 高国富.进行有限元分析时简支梁约束条件的确定[J].河南理工大学学报(自然科学版), 2014, 33(2): 177-181. doi: 10.3969/j.issn.1673-9787.2014.02.011

    WANG D S, CHENG J Y, GAO G F. Determination of constraints for finite element analysis of a simple beam [J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33 (2): 177-181. doi: 10.3969/j.issn.1673-9787.2014.02.011
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return