• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Zewei, Zhang Yan, Qi Shuaizheng, Zhu Junjie, Yuan Wei, Zhang Yadong, Liu Xuezeng, Zhang Jinfeng. Tissue culture regeneration of hybrid Liquidambar styraciflua × L. formosana[J]. Journal of Beijing Forestry University, 2018, 40(8): 42-49. DOI: 10.13332/j.1000-1522.20170443
Citation: Wang Zewei, Zhang Yan, Qi Shuaizheng, Zhu Junjie, Yuan Wei, Zhang Yadong, Liu Xuezeng, Zhang Jinfeng. Tissue culture regeneration of hybrid Liquidambar styraciflua × L. formosana[J]. Journal of Beijing Forestry University, 2018, 40(8): 42-49. DOI: 10.13332/j.1000-1522.20170443

Tissue culture regeneration of hybrid Liquidambar styraciflua × L. formosana

More Information
  • Received Date: December 13, 2017
  • Revised Date: March 19, 2018
  • Published Date: July 31, 2018
  • ObjectiveLiquidambar sp. has strong adaptability, fast growth, high ornamental values, it can be used as commercial tree species and landscaping tree species. Liquidambar styraciflua can be interfertiled with Liquidambar fomorsana, and their offspring can show robust growth. However, the rapid propagation technology and genetic transformation system of hybrid sweetgum need to be improved.
    MethodIn this study, using Liquidambar styraciflua as female parent and Liquidambar fomorsana as male parent to obtain hybrid sweetgum, and hybrid sweetgum cotyledon, cotyledon node and hypocotyl explants were used to establish an efficient tissue culture regeneration system, we also compared the differentiation ability of the three explants.
    Result(1) The best bud induction medium of cotyledon and cotyledon node explants was 0.2 mg/L TDZ+0.1 mg/L NAA basal WPM, but the best bud induction medium of hypocotyl explants was 0.1 mg/L TDZ+0.1 mg/L NAA basal WPM; (2) Shoot elongation liquid medium contained 0.5 mg/L 6-BA+0.1 mg/L NAA+0.8 mg/L GA without agar WPM performed the highest average adventitious bud induction number for three explant types; (3) Adventitious buds were rooted in 2.0 mg/L IBA+0.1 mg/L NAA WPM medium, and its rooting rate reached 100%;(4) After the adventitious buds being cultured in rooting medium for 2 months, the plantlets were transferred into greenhouse, and the transplant survival rate was more than 90%.
    Conclusion(1) The differentiation abilities of the three explants were as follows: cotyledonary node>cotyledon> hypocotyl, in which the differentiation ability of cotyledonary nodes was significantly higher than cotyledon and hypocotyl; (2) TDZ can effectively promote the induction of adventitious buds, and GA has a significant effect on adventitious shoot elongation; (3) The hybrid sweetgum explants obtained the highest adventitious bud induction rate in the solid medium, the highest number of adventitious buds was obtained in the liquid medium, and no vitrification occurred in the liquid culture. The results of this experiment lay a solid foundation for the rapid propagation of new varieties and the establishment of genetic transformation system of hybrid sweetgum.
  • [1]
    Kim M K, Sommer H E, Merkle S A, et al.High-frequency induction of adventitious shoots from hypocotyl segments of Liquidambar styraciflua L. by thidiazuron[J]. Plant Cell Reports, 1997, 16:536-540.
    [2]
    Merkle S A, Neu K A, Battle P J. Somatic embryogenesis and plantlet regeneration from immature and mature tissues of sweetgum (Liquidambar styraciflua)[J]. Plant Science, 1998, 132:169-178. doi: 10.1016/S0168-9452(98)00007-7
    [3]
    Zheng Y Q, Pan B, Itohl T. Chemical induction of traumatic gum ducts in Chinese sweetgum, Liquidambar formosana[J]. Iawaj, 2015, 36:58-68. doi: 10.1163/22941932-00000085
    [4]
    路佳.北美枫香组织培养技术研究[D].洛阳: 河南科技大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10464-1014078548.htm

    Lu J.Study on tissue culture of Liquidambar styraciflua[D]. Luoyang: Henan University of Science and Technology, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10464-1014078548.htm
    [5]
    Santamour F S.Interspecific hybridization in Liquidambar[J]. Forest Science, 1972, 18:23-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88764ce8b426a96fde303cc8aa12d5c6
    [6]
    Vendrame W A, Holliday C P, Merkle S A. Clonal propagation of hybrid sweetgum (Liquidambar styraciflua×L. formosana) by somatic embryogenesis[J]. Plant Cell Reports, 2001, 20:691-695. doi: 10.1007/s00299-001-0394-z
    [7]
    Zhang Y, Wang Z W, Qi S Z, et al. In vitro tetraploid induction from leaf and petiole explants of hybrid sweetgum (Liquidambar styraciflua×Liquidambar formosana)[J]. Forests, 2017, 8:264. doi: 10.3390/f8080264
    [8]
    Sutter E G, Barker P B.In vitro propagation of mature Liquidambar styraciflua[J]. Plant Cell Tissue Organ Cult, 1985, 5:13-21. doi: 10.1007/BF00033565
    [9]
    Sommer H E, Brown C L. Embryogenesis in tissure cultures of sweetgum[J]. Forest Science, 1980, 26:257-260. https://www.researchgate.net/publication/233498705_Notes_Embryogenesis_in_Tissue_Cultures_of_Sweetgum
    [10]
    Sommer H E, Brown C L. Embryogenesis in tissue cultures of sweetgum[J]. Forest Science, 1980, 26:257-260. https://www.researchgate.net/publication/233498705_Notes_Embryogenesis_in_Tissue_Cultures_of_Sweetgum
    [11]
    Brand M H, Lineberger R D. In vitro adventitious shoot formation on mature-phase leaves and petioles of Liquidambar styraciflua L.[J]. Plant Science, 1988, 57:173-179. doi: 10.1016/0168-9452(88)90084-2
    [12]
    Brand M H, Lineberger R D.The effect of leaf source and developmental stage on shoot organogenic potential of sweetgum (Liquidambar styraciflua L.) leaf explants[J]. Plant Cell Tissue Organ Cult, 1991, 24:1-7. doi: 10.1007/BF00044257
    [13]
    Radhika K, Sujatha M, Nageshwar T.Thidiazuron stimulates adventitious shoot regeneration in different safflower explants[J]. Biologia Plantarum, 2006, 50 (2): 174-179. doi: 10.1007/s10535-006-0003-7
    [14]
    Roberto C, Silvia S, Bruno M.The use of TDZ for the efficient in vitro regeneration andorganogenesis of strawberry and blueberry cultivars[J]. Scientia Horticulturae, 2016, 207:117-124. doi: 10.1016/j.scienta.2016.05.016
    [15]
    徐晓峰, 黄学林.TDZ:一种有效的植物生长调节剂[J].植物学通报, 2003, 20(2):227-237. doi: 10.3969/j.issn.1674-3466.2003.02.014

    Xu X F, Huang X L.TDZ:an efficacious plant growth regulator[J]. Chinese Bulletin of Botany, 2003, 20(2):227-237. doi: 10.3969/j.issn.1674-3466.2003.02.014
    [16]
    Singh C K, Jaiswal P S, Patil V R, et al.Effect of plant growth regulators on in vitro plant regeneration of sandalwood (Santalum album L.) via organogenesis[J]. Agroforest Syst, 2016, 90:281-288. doi: 10.1007/s10457-015-9853-3
    [17]
    Maria E E, Daniel H, Mateusz K, et al.Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation[J]. New Phytologist, 2015, 205:1288-1295. doi: 10.1111/nph.13144
    [18]
    Reeves D W, Couvillon G A, Horton B D.Effect of gibberellic acid (GA3) on elongation and rooting of 'St. Julien A' rootstock in vitro[J]. Scientia Horticulturae, 1985, 3:253-259. http://cn.bing.com/academic/profile?id=4c16757e7e7a6aec5edbac5f6136a3b1&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    Murasnige T, Skoog F.A revised medium for rapid growth and bio agsays with tohaoco tissue cultures[J]. Physiologia Plantarum, 1962, 15:473-497. doi: 10.1111/ppl.1962.15.issue-3
    [20]
    Lloyd G, McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture[J]. Proc Int Plant Propag Soc, 1980, 30:421-427. http://cn.bing.com/academic/profile?id=b84eaeafba14d8a0a0b803c1c03520fe&encoded=0&v=paper_preview&mkt=zh-cn
    [21]
    Qi W C, Iris E M, Jan G S.Regeneration and transformation of Crambe abyssinica[J]. BMC Plant Biology, 2014, 14:235. doi: 10.1186/s12870-014-0235-1
    [22]
    Pankaj K, Srivastava D K.High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop[J]. Physiol Mol Biol Plants, 2015, 21(2):279-285. doi: 10.1007/s12298-015-0282-6
    [23]
    Yang X F, Yu X Q, Zhou Z.A high-efficiency Agrobacterium tumefaciens mediated transformation system using cotyledonary node as explants in soybean (Glycine max L.)[J]. Acta Physiol Plant, 2016, 38:60. doi: 10.1007/s11738-016-2081-2
    [24]
    孙晓敏, 陈争, 李美飞, 等.光皮桦组织培养离体再生研究[J].西北植物学报, 2012.32(3): 604-610. doi: 10.3969/j.issn.1000-4025.2012.03.026

    Sun X M, Chen Z, Li M F, et al.In vitro regeneration of Betula luminifrra[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3):604-610. doi: 10.3969/j.issn.1000-4025.2012.03.026
    [25]
    Patial V, Krishna R.Development of an efficient, genotype independent plant regeneration and transformation protocol using cotyledonary nodes in safflower (Carthamus tinctorius L.)[J]. Journal of Plant Biochemistry Biotechnology, 2016, 25(4):421-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6bb6806c34504303720cf1ab1ac551c1
    [26]
    班德宇, 陈小英, 黄诚梅.赤霉素与多效唑对甘蔗愈伤再生苗生长的影响[J].中国糖料, 2015, 37(5):24-27. http://d.old.wanfangdata.com.cn/Periodical/zgtl201505009

    Ban D Y, Chen X Y, Huang C M.Effects of GA and PP33 on the growth of callus regenerated seedlings of sugarcane[J]. Sugar Crops of China, 2015, 37(5):24-27. http://d.old.wanfangdata.com.cn/Periodical/zgtl201505009
    [27]
    Izabela G K, Przemysław R, Stanisław B, et al.The inluence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina[J]. Plant Cell Tiss Organ Cult, 2017, 128:479-486. doi: 10.1007/s11240-016-1126-y
    [28]
    Prasad V S, Dutta G.In vitro shoot regeneration of gladiolus in semi-solid agar versus liquid cultures with support systems[J]. Plant Cell Tiss Organ Cult, 2006, 87:263-271. doi: 10.1007/s11240-006-9160-9
    [29]
    Maxwell P A, Yi Z J, Susan J M, et al.Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems[J]. Plant Cell Reports, 2007, 26: 13-19. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0213796127
    [30]
    Luiz E B S, Leandro V A.Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium[J]. Plant Cell Tiss Organ Cult, 2012, 108:465-472. doi: 10.1007/s11240-011-0058-9
  • Cited by

    Periodical cited type(19)

    1. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    2. 田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
    3. 章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
    4. 王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
    5. 富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
    6. 吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
    7. 李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
    8. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    9. 张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
    10. 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
    11. 刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
    12. 李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
    13. 张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
    14. 唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 . 本站查看
    15. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    16. 白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
    17. 刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
    18. 王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
    19. 侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .

    Other cited types(17)

Catalog

    Article views (2993) PDF downloads (82) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return