Citation: | Li Shuang, Su Yanyan, Wang Houling, Li Huiguang, Liu Chao, Xia Xinli, Yin Weilun. Populus euphratica miR1444b positively regulates plants response to drought stress in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 1-9. DOI: 10.13332/j.1000-1522.20180043 |
[1] |
王让会, 王晓伟, 游先祥, 等.荒漠河岸林生态系统的结构分析[J].干旱区研究, 2002, 19(2):7-11. http://d.old.wanfangdata.com.cn/Periodical/ghqyj200202002
Wang R H, Wang X W, You X X, et al.Analysis on the structure of the desert riparian forest ecosystems[J].Arid Zone Research, 2002, 19(2):7-11. http://d.old.wanfangdata.com.cn/Periodical/ghqyj200202002
|
[2] |
Dong Y, Wang C, Han X, et al.A novel bHLH transcription factor PeHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis[J].Biochemical & Biophysical Research Communications, 2014, 450(1):453-458.
|
[3] |
He F, Wang H L, Li H G, et al.PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus[J/OL].Plant Biotechnology Journal, 2018[2018-03-09].https://doi.org/10.1111/pbi.12893.
|
[4] |
李岚, 王厚领, 赵琳, 等.异源表达Peu-miR473a增强拟南芥的抗旱性[J].北京林业大学学报, 2015, 37(5):30-39. doi: 10.13332/j.1000-1522.20140461
Li L, Wang H L, Zhao L, et al.Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana[J].Journal of Beijing Forestry University, 2015, 37(5):30-39. doi: 10.13332/j.1000-1522.20140461
|
[5] |
段中鑫.胡杨microRNA Peu-miR156j和Peu-miR69o表达模式分析及功能鉴定[D].北京: 北京林业大学, 2012.
Duan Z X.Expression pattern and functional analysis of microRNA peu-miR156j and peu-miR169o from Populous euphratica [D].Beijing: Beijing Forestry University, 2012.
|
[6] |
段中鑫, 覃玉蓉, 夏新莉, 等.超量表达胡杨peu-MIR156j基因增强拟南芥耐盐性[J].北京林业大学学报, 2011, 33(6):1-7. http://j.bjfu.edu.cn/article/id/9665
Duan Z X, Qin Y R, Xia X L, et al.Overexpression of Populous euphratica peu-miR156j gene enhancing salt tolerance in Arabidopsis thaliana[J].Journal of Beijing Forestry University, 2011, 33(6):1-7. http://j.bjfu.edu.cn/article/id/9665
|
[7] |
Park W, Li J, Song R, et al.Carpel factory, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J].Current Biology, 2002, 12(17):1484-1495. doi: 10.1016/S0960-9822(02)01017-5
|
[8] |
Zhang Y C, Yu Y, Wang C Y, et al.Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J].Nature Biotechnology, 2013, 31(9):848-854. doi: 10.1038/nbt.2646
|
[9] |
Taylor P F, Guiling S, Caitlin E B, et al.Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco[J].Molecular Biotechnology, 2011, 49(2):159-165. doi: 10.1007/s12033-011-9387-5
|
[10] |
Li B S, Qin Y R, Duan H, et al.Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J].Journal of Experimental Botany, 2011, 62 (11):3765-3779. doi: 10.1093/jxb/err051
|
[11] |
Wang T Z, Chen L, Zhao M, et al.Identification of drought-responsive microRNAs and their targets in Medicago truncatula by genome-wide high-throughput sequencing[J].BMC Genomics, 2011, 12(1):361-372. doi: 10.1186/1471-2164-12-361
|
[12] |
Lu X, Duan H, Lian C L, et al.The role of peu-miR164 and its target Pe-NAC genes in response to abiotic stress in Populus euphratica[J].Plant Physiology & Biochemistry, 2017, 115:418-438.
|
[13] |
Lu S F, Chiang C.Conservation and diversity of MicroRNA-associated copper-regulatory networks in Populous trichocarpa [J].Journal of Integrative Plant Biology, 2011, 53(11):879-891. doi: 10.1111/jipb.2011.53.issue-11
|
[14] |
崔秀娜.毛果杨微小RNA1444a的克隆、胁迫表达分析及遗传转化研究[D].阜新: 辽宁工程技术大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10147-1014181640.htm
Cui X N.Cloning, stress expression analysis and genetic transformation of miR1444a in Populus trichacarpa[D].Fuxin: Liaoning University of Engineering and Technology, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10147-1014181640.htm
|
[15] |
覃玉蓉.胡杨microRNAs的克隆及其功能研究[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134964.htm
Qin Y R.Cloning and functional analysis of microRNAs from Populus euphratica[D].Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011134964.htm
|
[16] |
Zhang X, Henriques R, Lin S S, et al.Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J].Nature Protocols, 2006, 1 (2):641-646. doi: 10.1038/nprot.2006.97
|
[17] |
Shi H T, Ye T, Zhu J K, et al.Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis[J].Journal of Experimental Botany, 2014, 65(15):4119-4131. doi: 10.1093/jxb/eru184
|
[18] |
Si L, Guo C, Cao Y, et al.The effect of nitrobenzene on antioxidative enzyme activity and DNA damage in tobacco seedling leaf cells[J].Environmental Toxicology & Chemistry, 2012, 31 (9):2078-2084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e4cd3977ce9520946e32365fbfc39de
|
[19] |
高润石, 王红, 高艾.茎环法与加PolyA尾法PCR在检测MicroRNA时引物设计的策略[J].毒理学杂志, 2012, 26(5):378-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsdlxzz201205016
Gao R S, Wang H, Gao A.Strategy of primer design for detecting microRNA by stem loop method and PolyA tail PCR[J].Toxicology Journal, 2012, 26(5):378-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wsdlxzz201205016
|
[20] |
Rao G, Sui J, Zeng Y, et al.Denovo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana [J/OL].PLos One, 2014, 9(10): e109122[2017-10-06]. https://doi.org/10.1371/journal.pone.0109122.
|
[21] |
Song Y, Ma K, Ci D, et al.Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa)[J/OL].PLos One, 2013, 8(5): e62681[2017-10-06]. http://doi.org/10.1371/journal.pone.0062681.
|
[22] |
Chen L, Yuan R, Zhang Y, et al.Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing[J].Planta, 2012, 235(5):873-883. doi: 10.1007/s00425-011-1548-z
|
[23] |
Wang M Z, Li C L, Lu S F.Origin and evolution of miR1444 genes in Salicaceae[J].Scientific Reports, 2017, 7:39740. doi: 10.1038/srep39740
|
[24] |
杨青杰.黄龙胆类胡萝卜素生物合成基因启动子的功能分析[D].哈尔滨: 东北师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10200-1013357801.htm
Yang Q J.Functional characterization of the Gentiana lutea carotenoid biosynthetic gene promoters[D].Harbin: Northeast Normal University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10200-1013357801.htm
|
[25] |
Youshihiro N, Kazuo N, Zabta K S, et al.Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J].Plant Journal for Cell & Molecular Biology, 2003, 34(2):137-148. doi: 10.1046/j.1365-313X.2003.01708.x
|
[26] |
Gao S, Gao J, Zhu X, et al.ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis[J].Molecular Plant, 2016, 9(9):1272-1285. doi: 10.1016/j.molp.2016.06.006
|
[27] |
石洪萍.三角褐指藻尿苷二磷酸葡萄糖焦磷酸化酶在碳流分配中的功能[D].青岛: 中国海洋大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10423-1015717108.htm
Shi H P.Carbon allocation function of UDP-glucose pyrophosphorylase in Pheodactylum tricornutum [D].Qingdao: Ocean University of China, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10423-1015717108.htm
|
[28] |
Ute H, Hans W, Helmut B.A sucrose-synthase gene of Vicia faba L. :expression pattern in developing seeds in relation to starch synthesis and metabolic regulation[J].Planta, 1993, 191(3):394-401. https://www.ncbi.nlm.nih.gov/pubmed/7764025
|
[29] |
Zhang J X, Kirkham M B.Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings:changes in antioxidant system, oxidation of proteins and lipids, and protease activities[J].The Plant Journal, 1994, 35(5):785-791.
|
[1] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250 |
[4] | Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289 |
[5] | LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324 |
[8] | ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020 |
[9] | LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27. |
[10] | WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95. |
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |