• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
Citation: Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113

Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years

More Information
  • Received Date: April 01, 2018
  • Revised Date: June 06, 2018
  • Published Date: August 31, 2018
  • ObjectiveIn recent years, research on tree's adapting to climate change has become a hot topic in the world. So far there are few researches on adaptability of landscape tree species response to climate change in China. Based on temperature and precipitation data from 1961 to 2015 in Shanghai, climate adaptation of 40 landscape tree species was assessed quantitatively, and the potential impacts of climate change on their growth were analyzed in the future scenarios.
    MethodThe SDM (Species distribution model) was used to collect the comprehensive geographical information of the target species worldwide, then the climatic data of all occurrences were extracted to identify their climate characters. The most suitable climatic characters were finally determined by the Euclidean Distance Method to calculate the differences between the optimal factors and state of Shanghai climate in different periods.
    ResultIn the past 55 years, annual mean temperature (AMT) of Shanghai rose from 15.5 to 16.6℃. The increasing trend of temperature difference in the downtown was most prominent, but it did not reach a significant level. Annual mean precipitation (AMP) also went up from 1086.0 to 1198.9mm, and in humidity season, changes of average precipitation in overall city, among suburban areas, between urban and suburban areas all reached significant levels. According to annual mean biological temperature (ABT) and dry-wet index (HI), 40 target tree species can be categorized into 4 types: hot-dry climate type, warm-humid climate type, cool-dry climate type and cool-humid climate type. In the first 30 years, the climate conditions in suburbs are suitable for the growth of deciduous trees preferring cool-dry climate, followed by cool-humid tree species, and warm-humid tree species, then hot-dry climate type tree species. However, in the recent 30 years, the climate in the downtown has changed dramatically. The adaptability of the warm-humid tree species has taken the advantage, and the cool-humid tree species and the cool-dry tree species have declined in turn.
    ConclusionIn the past 55 years, the characteristics of climate change in Shanghai can be summarized as temperature warming and precipitation increasing in the rainy season. Climate change has potential impacts on the adaptability of landscape tree species, and has changed the priority sequence for tree species selection.
  • [1]
    Guédon Y, Legave J M. Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context[J]. Ecological Modelling, 2008, 219(1-2): 189-199. doi: 10.1016/j.ecolmodel.2008.08.010
    [2]
    Luo Z, Sun O J, Ge Q, et al. Phenological responses of plants to climate change in an urban environment[J]. Ecological Research, 2007, 22(3): 507-514. doi: 10.1007/s11284-006-0044-6
    [3]
    Roetzer T, Wittenzeller M, Haeckel H, et al. Phenology in central Europe: differences and trends of spring phenophases in urban and rural areas[J]. International Journal of Biometeorol, 2000, 44(2): 60-66. doi: 10.1007/s004840000062
    [4]
    Lu P, Yu Q, Liu J, et al. Advance of tree-flowering dates in response to urban climate change[J]. Agricultural and Forest Meteorology, 2006, 138(1-4): 120-131. doi: 10.1016/j.agrformet.2006.04.002
    [5]
    He X, Xu S, Xu W, et al. Effects of climate warming on phenological characteristics of urban forest in Shenyang City, China[J]. Chinese Geographical Science, 2016, 26(1): 1-9. doi: 10.1007/s11769-015-0782-x
    [6]
    张德顺, 刘鸣.上海木本植物早春花期对城市热岛效应的时空响应[J].中国园林, 2017, 33(1): 72-77. doi: 10.3969/j.issn.1000-6664.2017.01.015

    Zhang D S, Liu M. The temporal and spatial flowering response of early spring woody plants to the urban heat island effect in Shanghai[J]. Chinese Landscape Architecture, 2017, 33(1): 72-77. doi: 10.3969/j.issn.1000-6664.2017.01.015
    [7]
    Gillner S, Rüger N, Roloff A, et al. Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.)[J]. Forest Ecology and Management, 2013, 302: 372-378. doi: 10.1016/j.foreco.2013.03.032
    [8]
    李阔, 许吟隆.适应气候变化技术识别标准研究[J].科技导报, 2015, 33(16): 95-101. doi: 10.3981/j.issn.1000-7857.2015.16.015

    Li K, Xu Y L. On critera for identification of adaptation to climate change[J]. Science & Technology Review, 2015, 33(16): 95-101. doi: 10.3981/j.issn.1000-7857.2015.16.015
    [9]
    Ordóñez C, Duinker P N. Climate change vulnerability assessment of the urban forest in three Canadian cities[J]. Climatic Change, 2015, 131(4): 531-543. doi: 10.1007/s10584-015-1394-2
    [10]
    Roloff A, Korn S, Gillner S. The Climate-Species-Matrix to select tree species for urban habitats considering climate change[J]. Urban Forestry & Urban Greening, 2009, 8(4): 295-308. http://cn.bing.com/academic/profile?id=9ab2c6f4475e574eb5766138f59a62bb&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    Yang J. Assessing the impact of climate change on urban tree species selection: a case study in Philadelphia[J]. Journal of Forestry, 2009, 107(7): 364-372. http://cn.bing.com/academic/profile?id=b48aa3fbe6318c257b8c7a302283685d&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    Brandt L, Derby L A, Fahey R, et al. A framework for adapting urban forests to climate change[J]. Environmental Science & Policy, 2016, 66: 393-402. http://cn.bing.com/academic/profile?id=f8e9feebe332a42e6e96403835aca8d8&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Kourgialas N N, Karatzas G P. A flood risk decision making approach for Mediterranean tree crops using GIS: climate change effects and flood-tolerant species[J]. Environmental Science & Policy, 2016, 63: 132-142. http://cn.bing.com/academic/profile?id=5563a86246db9b70379aa7003b9b71ff&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Fan P, Ouyang Z, Basnou C, et al. Nature-based solutions for urban landscapes under post-industrialization and globalization: Barcelona versus Shanghai[J]. Environmental Research, 2017, 156: 272-283. doi: 10.1016/j.envres.2017.03.043
    [15]
    Wang H, Qin J, Hu Y, et al. Detecting the plant species composition and diversity among the farmers' settlement types in Shanghai[J]. Landscape and Ecological Engineering, 2015, 11(2): 313-325. doi: 10.1007/s11355-014-0255-x
    [16]
    上海科学院.上海植物志[M].上海:上海科学技术文献出版社, 1999:1-2.

    Shanghai Academy of Science & Technology. The plants of Shanghai (Part Ⅱ)[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999:1-2.
    [17]
    沈泽昊, 张新时.中国亚热带地区植物区系地理成分及其空间格局的数量分析[J].植物分类学报, 2000, 38(4): 366-380. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200004006

    Shen Z H, Zhang X S. A quantitative analysis on the floristic elements of the Chinese subtropical region and their spatial patterns[J]. Acta Phytotaxonomica Sinica, 2000, 38(4): 366-380. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200004006
    [18]
    Banta J A, Ehrenreich I M, Gerard S, et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana[J]. Ecology Letters, 2012, 15(8): 769-777. doi: 10.1111/j.1461-0248.2012.01796.x
    [19]
    Brandt L A, Benscoter A M, Harvey R, et al. Comparison of climate envelope models developed using expert-selected variables versus statistical selection[J]. Ecological Modelling, 2017, 345: 10-20. doi: 10.1016/j.ecolmodel.2016.11.016
    [20]
    Buma B, Wessman C A. Forest resilience, climate change, and opportunities for adaptation: a specific case of a general problem[J]. Forest Ecology and Management, 2013, 306: 216-225. doi: 10.1016/j.foreco.2013.06.044
    [21]
    Miller J. Species distribution modeling[J]. Geography Compass, 2010, 4(6): 490-509. doi: 10.1111/geco.2010.4.issue-6
    [22]
    阎洪.计算机引种决策支持系统的建立及其应用Ⅰ:引种区划[J].林业科学, 1989, 25(5): 395-400. doi: 10.3321/j.issn:1001-7488.1989.05.002

    Yao H. A decision support system for introduction of exotics (Ⅰ): delineation of suitable zones[J]. Scientia Silvae Sinicae, 1989, 25(5): 395-400. doi: 10.3321/j.issn:1001-7488.1989.05.002
    [23]
    吴中伦.园林化树种的选择与规划[J].林业科学, 1959, 5(2): 1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE195902000.htm

    Wu Z L. Selection and planning of landscape tree species[J]. Scientia Silvae Sinicae, 1959, 5(2): 1-27. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE195902000.htm
    [24]
    Zhang M, Slik J W F, Ma K. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Scientific Reports, 2016, 6(1):1-9. doi: 10.1038/s41598-016-0001-8
    [25]
    陈新美, 雷渊才, 张雄清, 等.样本量对MaxEnt模型预测物种分布精度和稳定性的影响[J].林业科学, 2012, 48(1): 53-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201201010

    Chen X M, Lei Y C, Zhang X Q, et al. Effects of sample sizes on accuracy and stability of maximum entropy model in predicting species distribution[J]. Scientia Silvae Sinicae, 2012, 48(1): 53-59. http://d.old.wanfangdata.com.cn/Periodical/lykx201201010
    [26]
    Mckenney D W, Pedlar J H, Lawrence K, et al. Beyond traditional hardiness zones: using climate envelopes to map plant range limits[J]. Bioscience, 2007, 57(11): 929-937. doi: 10.1641/B571105
    [27]
    Holdridge L R.Determination of world plant formations from simple climatic data[J].Science, 1947, 105:367-368. doi: 10.1126/science.105.2727.367
    [28]
    Kira T.On the altitudinal arrangement of climatic zones in Japan[J]. Kanti-Nougaku, 1948, 2:143-173.
    [29]
    Bailey H P.Semi-arid climates:their definition and distribution[J].EcolStudy, 1973, 34:73-97. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223682473/
    [30]
    Higa M, Tsuyama I, Nakao K, et al. Influence of nonclimatic factors on the habitat prediction of tree species and an assessment of the impact of climate change[J]. Landscape and Ecological Engineering, 2013, 9(1): 111-120. doi: 10.1007/s11355-011-0183-y
    [31]
    Booth T H. Estimating potential range and hence climatic adaptability in selected tree species[J]. Forest Ecology and Management, 2016, 366: 175-183. doi: 10.1016/j.foreco.2016.02.009
    [32]
    徐文铎.东北主要树种的分布与热量关系的初步研究[J].东北林学院学报, 1982, 1(4): 1-10. http://www.cnki.com.cn/Article/CJFD1982-DBLY198204000.htm

    Xu W D. Preliminary study of correlations between distribution of main forest trees and thermal climate in Northeast China[J]. Journal of Northeastern Forestry Institute, 1982, 1(4): 1-10. http://www.cnki.com.cn/Article/CJFD1982-DBLY198204000.htm
    [33]
    洪必恭, 李绍珠.江苏主要常绿阔叶树种的分布与热量关系的初步研究[J].生态学报, 1981, 1(2): 105-111. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB198102001.htm

    Hong B G, Li S Z. The preliminary study of the correlations between the distribution of main everygreen broadleaf tree species in Jiangsu and climate[J]. Acta Ecologica Sinica, 1981, 1(2): 105-111. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB198102001.htm
    [34]
    张粤, 陈玮, 何兴元, 等.中国东北城市森林树种选择与气候的关系[J].生态学杂志, 2003, 22(6): 173-176. doi: 10.3321/j.issn:1000-4890.2003.06.036

    Zhang Y, Chen W, He X Y, et al. Relationship between the selection of urban forest species and climate in northeastern China[J]. Chinese Journal of Ecology, 2003, 22(6): 173-176. doi: 10.3321/j.issn:1000-4890.2003.06.036
    [35]
    史军, 崔林丽, 杨涵洧, 等.上海气候空间格局和时间变化研究[J].地球信息科学学报, 2015, 17(11): 1348-1354. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511009

    Shi J, Cui L L, Yang H W, et al. Spatial pattern and temporal change of climate in Shanghai[J]. Journal of Geo-information Science, 2015, 17(11): 1348-1354. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201511009
    [36]
    史军, 崔林丽, 田展, 等.上海百余年来气温日间波动特征及城市化影响[J].资源科学, 2011, 33(5): 989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026

    Shi J, Cui L L, Tian Z, et al. Two-day fluctuations of temperature and the impacts of urbanizationin Shanghai during the period 1873-2009[J]. Resources Science, 2011, 33(5): 989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026
    [37]
    崔林丽, 史军, 周伟东.上海极端气温变化特征及其对城市化的响应[J].地理科学. 2009, 29(1): 93-97. doi: 10.3969/j.issn.1000-0690.2009.01.015

    Cui L L, Shi J, Zhou W D. Characteristics of extreme temperature variations and their response to ubanization in Shanghai[J]. Scientia Geographica Sinica, 2009, 29(1): 93-97. doi: 10.3969/j.issn.1000-0690.2009.01.015
    [38]
    王轩, 尹占娥, 迟潇潇, 等.气候变化下上海市降水问题[J].热带地理, 2015, 35(3): 324-333. http://d.old.wanfangdata.com.cn/Periodical/rddl201503005

    Wang X, Yin Z E, Chi X X, et al. Precipitation in Shanghai under climate change[J]. Tropical Geography, 2015, 35(3): 324-333. http://d.old.wanfangdata.com.cn/Periodical/rddl201503005
    [39]
    Zhang K, Wang R, Shen C, et al. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China[J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 101-112. doi: 10.1007/s10661-009-1154-8
    [40]
    卞娟娟, 郝志新, 郑景云, 等. 1951—2010年中国主要气候区划界线的移动[J].地理研究, 2013, 32(7): 1179-1187. http://www.cqvip.com/QK/95732X/201307/46793120.html

    Bian J J, Hao Z X, Zheng J Y, et al. The shift on boundary of climate regionalization in China from 1951 to 2010[J]. Geographical Research, 2013, 32(7): 1179-1187. http://www.cqvip.com/QK/95732X/201307/46793120.html
    [41]
    郑景云, 卞娟娟, 葛全胜, 等.中国1951-1980年及1981-2010年的气候区划[J].地理研究. 2013, 32(6): 987-997. http://d.old.wanfangdata.com.cn/Periodical/dlyj201306001

    Zheng J Y, Bian J J, Ge Q S, et al. The climate regionalization in China for 1951-1980 and 1981-2010[J]. Geographical Research, 2013, 32(6): 987-997. http://d.old.wanfangdata.com.cn/Periodical/dlyj201306001
    [42]
    Fang J Y, Li Y. Climatic factors for limiting northward distribution of eight temperate tree species in eastern North America[J]. Acta Botanica Sinica, 2002, 44(2):199-203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74e1c371960d27f8b25fac2eaf9033e2
    [43]
    《上海园林志》编纂委员会.上海园林志[M].上海:上海社会科学院出版社, 2000: 502-504.

    Compilation Committee of Annals of Shanghai Landscape Architecture. Annals of Shanghai landscape architecture[M]. Shanghai: Shanghai Academy of Social Sciences Publishers, 2000: 502-504.
    [44]
    周伟东, 朱洁华, 梁萍.近134年上海冬季气温变化特征及其可能成因[J].热带气象学报, 2010, 26(2): 211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011

    Zhou W D, Zhu J H, Liang P. Characteristics of winter temperature variation in Shanghai during 1873-2006 and their probable causes[J]. Journal of Tropical Meteorology, 2010, 26(2): 211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011
    [45]
    贺芳芳, 赵兵科.近30年上海地区暴雨的气候变化特征[J].地球科学进展, 2009, 24(11): 1260-1267. doi: 10.3321/j.issn:1001-8166.2009.11.011

    He F F, Zhao B K. The characteristics of climate change of torrential rains in Shanghai region in recent 30 Years[J]. Advances in Earth Science, 2009, 24(11): 1260-1267. doi: 10.3321/j.issn:1001-8166.2009.11.011
    [46]
    殷杰, 尹占娥, 于大鹏, 等.基于情景的上海台风风暴潮淹没模拟研究[J].地理科学, 2013, 33(1): 110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201301016

    Yin J, Yin Z E, Yu D P, et al. Flood simulation study of typhoon storm surge based on scenarios in Shanghai[J]. Scientia Geographica Sinica, 2013, 33(1): 110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201301016
    [47]
    Gillner S, Vogt J, Roloff A. Climatic response and impacts of drought on oaks at urban and forest sites[J]. Urban Forestry & Urban Greening, 2013, 12(4): 597-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d21438958f7bf4eea01cd20602c59ddc
    [48]
    Gillner S, Korn S, Roloff A. Leaf-gas exchange of five tree species at urban street sites[J]. Arboriculture & Urban Forestry, 2015, 41(3): 113-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af27dadd20e530bf4d702a32e1d414b0
  • Related Articles

    [1]Wang Min, Guo Guangyu. Coupling and coordination relationship between urbanization and eco-environment in Shanghai metropolitan area: empirical analysis based on panel data from 2011 to 2020[J]. Journal of Beijing Forestry University, 2024, 46(7): 101-111. DOI: 10.12171/j.1000-1522.20230216
    [2]Gong Xiaoqing, Xie Rong, Yang Hua. Response of radial growth of three common tree species to climate change in a spruce-fir mixed stand in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 1-10. DOI: 10.12171/j.1000-1522.20210479
    [3]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [4]Wang Lulu, Yilihamu Yaermaimaiti. Prediction of the potential distribution of two endemic tree species in Xinjiang of western China under future climate scenarios[J]. Journal of Beijing Forestry University, 2022, 44(6): 10-22. DOI: 10.12171/j.1000-1522.20210301
    [5]Chen Yuheng, Lu Jiayi, Wu Pengfei, Mao Lingfeng. Response of invasive area of Ageratina adenophora to future climate change based on climate and species diffusion[J]. Journal of Beijing Forestry University, 2022, 44(1): 69-76. DOI: 10.12171/j.1000-1522.20210063
    [6]Zhang Deshun, Chen-Lu Qiyao, Xue Kaihua, Wang Zhen, Yao Chiyuan, Chen Yijia. Determination and analysis of the relationship between microclimate elements and greening structures in the city streets of Shanghai: taking Xuhui District and Yangpu District as examples[J]. Journal of Beijing Forestry University, 2021, 43(4): 124-131. DOI: 10.12171/j.1000-1522.20170359
    [7]Zhang Deshun, Li Keke, Li Linglu, Zhang Liyao, Liu Ming. Wind resistance of 25 landscape tree species in coastal area of Shanghai[J]. Journal of Beijing Forestry University, 2020, 42(7): 122-130. DOI: 10.12171/j.1000-1522.20190253
    [8]Wang Lei, Xu Jiachen, Zhen Yaxing, Zhang Heng. Pyrolysis kinetics of major landscape tree species in Hohhot of northern China based on thermogravimetric analysis[J]. Journal of Beijing Forestry University, 2020, 42(2): 87-95. DOI: 10.12171/j.1000-1522.20190280
    [9]YANG Shu-ping, ZHANG De-shun, LI Yue-zhong, JU Rui-ting, LIU Ming. Evaluation system for the resistance of landscape tree to diseases and pests and its application in Shanghai under climate warming[J]. Journal of Beijing Forestry University, 2017, 39(8): 87-97. DOI: 10.13332/j.1000-1522.20160346
    [10]ZHANG Ming-li, , QIN Jun, HU Yong-hong. Effects of temperature reduction and humidity increase of plant communities in Shanghai[J]. Journal of Beijing Forestry University, 2008, 30(2): 39-43.
  • Cited by

    Periodical cited type(11)

    1. 刘海萍,宋德萱. 基于ENVI-met的住区室外热环境模拟探析——以上海市中心城区为例. 住宅科技. 2024(02): 45-52 .
    2. 陈李林,钟文玉,胡海琴,林昌进,姜明鑫,李雅萍,王萌萌,雷国铨,陈梅英. 气候变化情景下茶丽纹象甲在中国的潜在适生区预测. 环境昆虫学报. 2024(06): 1445-1456 .
    3. 陈香波,周群,张冬梅,罗玉兰,陈钦,尹丽娟,王良根. 三角梅在上海耐寒适生性研究与城市绿化应用实践. 园林. 2023(05): 120-126 .
    4. 王红瑞,张亮,刘江乐. 1951—2020年兰州市气候变化对园林树种适应性的影响. 广西林业科学. 2023(03): 350-360 .
    5. 王悦,徐珂,高健洲. 中国新花卉开发现状分析及展望. 现代园艺. 2023(23): 77-80+84 .
    6. 江曼. 上海露地弱光环境绿化策略研究. 绿色科技. 2022(11): 142-145 .
    7. 李峻峰,陆峥妍,甄蒙. 夏热冬冷地区城市绿地“冷”岛效应年周期变化. 南方建筑. 2022(09): 87-95 .
    8. 王睿,朱玲. 近自然理念下城市河岸带草本植物群落构建的实验研究途径. 风景园林. 2022(10): 102-108 .
    9. 孙泽宇,代鹏飞,翟俊. 一种应对气候变化的适应性城市植物配置方法. 中国园林. 2021(04): 122-126 .
    10. 李融梅,周玲琴,毕庆泗,陈连根. 蔓长春花绣线菊蚜消长动态及耐寒性研究. 安徽农业科学. 2020(15): 160-162+193 .
    11. 刘鸣,张德顺. 气候变暖对城市园林树木的影响. 科学. 2019(03): 25-28 .

    Other cited types(5)

Catalog

    Article views (4232) PDF downloads (109) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return