• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jiang Guiquan, Zhang Zhuorui, Zhang Shimeng, Ren Xuanbai, Pang Jiuyin. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118-126. DOI: 10.13332/j.1000-1522.20180124
Citation: Jiang Guiquan, Zhang Zhuorui, Zhang Shimeng, Ren Xuanbai, Pang Jiuyin. Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity[J]. Journal of Beijing Forestry University, 2018, 40(9): 118-126. DOI: 10.13332/j.1000-1522.20180124

Degradation of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity

More Information
  • Received Date: April 09, 2018
  • Revised Date: July 02, 2018
  • Published Date: August 31, 2018
  • ObjectiveIn order to provide scientific basis for development and utilization of larch bark, we investigated the degradation conditions of polymeric proanthocyanidin from larch bark catalyzed by resin and antioxidant activity of degradation products.
    MethodLarch bark oligomeric proanthocyanidins (LOPC) was prepared from polymeric proanthocyanidins of larch bark (LPPC) by CR57 resin catalytic degradation. Based on single factor experiments and response surface design analysis, the degrading conditions were optimized, and the structure characterization and antioxidant activity of the degradation product were analyzed as well.
    ResultThe results showed that the optimum conditions of catalytic degradation were as follows: the catalytic resin dosage 18mL per 100mL LPPC, catalytic temperature 76 ℃, catalytic reaction time 1.8 hours. Under the above conditions, the average degree of polymerization of degradation products was 3.76. Through the comparison of the chromatogram of LPPC and LOPC, it was found that the content of polymeric proanthocyanidins in the degradation products was obviously reduced, thereby proving that LPPC was degraded. The degradation products were characterized by UV and FTIR, and confirmed to have procyanidins features. The molecular mass distribution of the degradation products was analyzed by the linear model of MALDI-TOF mass spectrometry. The results revealed that LOPC was an oligomer with tetramer mainly from trimer to twelve oligomer. The LOPC exhibited a strong antioxidant activity, and its IC50 on DPPH free radical scavenging, ·OH free radical scavenging and ABTS free radical scavenging were 72.56, 12.64 and 2.52mg/L, respectively. Compared with GS, the LOPC on DPPH· scavenging capacity was higher and the reducing capacity, ·OH scavenging capacity and ABTS+· scavenging capacity were lower. But the LOPC on these free radical scavenging capacity was higher than PB, VC, TBHQ.
    ConclusionIt was concluded that CR57 resin could be used to catalyze the degradation reaction of LPPC, and the degradation product LOPC had good antioxidant activity.
  • [1]
    卜洪洋.原花青素提取纯化工艺及生产过程红外分析[D].北京: 北京林业大学, 2016.

    Piao H Y. Extraction-purification process and IR analysis production process of procyanidins[D]. Beijing: Beijing Forestry University, 2016.
    [2]
    王骏章, 董中云, 周悦颖, 等.浅谈兴安落叶松树皮资源现状及产品评估[J].内蒙古林业调查设计, 2010, 33(3): 38-40. doi: 10.3969/j.issn.1006-6993.2010.03.016

    Wang J Z, Dong Z Y, Zhou Y Y, et al. The present situation and assessment of Larix gmelinii in Xing'an City[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(3): 38-40. doi: 10.3969/j.issn.1006-6993.2010.03.016
    [3]
    张慧文, 张玉, 马超美.原花青素的研究进展[J].食品科学, 2015, 36(5): 296-304. http://d.old.wanfangdata.com.cn/Periodical/spkx200202047

    Zhang H W, Zhang Y, Ma C M. Progress in procyanidins research[J]. Food Science, 2015, 36(5): 296-304. http://d.old.wanfangdata.com.cn/Periodical/spkx200202047
    [4]
    吴春, 陆海燕, 王昊杰.低聚原花青素对草莓色素的抗氧化活性研究[J].哈尔滨商业大学学报(自然科学版), 2003, 19(6): 681-684. doi: 10.3969/j.issn.1672-0946.2003.06.024

    Wu C, Lu H Y, Wang H J. Study on antioxidant activity of oligomeric proanthocyanidins in strawberry red pigment[J]. Journal of Harbin University of Commerce (Natural Sciences Editon), 2003, 19(6): 681-684. doi: 10.3969/j.issn.1672-0946.2003.06.024
    [5]
    姜贵全.落叶松树皮原花青素的分级纯化及催化降解研究[D].哈尔滨: 东北林业大学, 2013.

    Jiang G Q. Study on the fractionation, purification and catalysed degradation of proanthocyanidins from larch bark[D]. Harbin: Northeast Forestry University, 2013.
    [6]
    郭庆启, 张娜, 李梦云, 等.落叶松松塔多酚含量、抗氧化能力与生长坡向的相关性[J].北京林业大学学报, 2014, 36(1): 62-65. http://j.bjfu.edu.cn/article/id/9960

    Guo Q Q, Zhang N, Li M Y, et al. Relationship between polyphenols and antioxidation in larch pine cones and growing slope aspect[J]. Journal of Beijing Forestry University, 2014, 36(1): 62-65. http://j.bjfu.edu.cn/article/id/9960
    [7]
    李长运, 吕敬慈, 魏莎莎, 等.肉桂高聚原花青素的氢化降解工艺研究[J].天然产物研究与开发, 2009, 21(4): 660-663. doi: 10.3969/j.issn.1001-6880.2009.04.029

    Li C Y, Lü J C, Wei S S, et al. Research on the hydrogenation degradation technique of polymeric procyanidins from cinnamon[J]. Natural Product Research and Development, 2009, 21(4): 660-663. doi: 10.3969/j.issn.1001-6880.2009.04.029
    [8]
    杜晓, 陆忠兵, 陶毅, 等.落叶松多聚原花青素催化氢解产物抗氧化活性研究[J].四川大学学报(工程科学版), 2005, 37(6): 65-70. doi: 10.3969/j.issn.1009-3087.2005.06.014

    Du X, Lu Z B, Tao Y, et al. Study on the antioxidant activity of catalytic hydrogenolysis products of polymeric proanthocyanidins from Larix gmelinii bark[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 65-70. doi: 10.3969/j.issn.1009-3087.2005.06.014
    [9]
    Contreras-Domínguez M, Guyot S, Marnet N, et al. Degradation of procyanidins by Aspergillus fumigatus: identification of a novel aromatic ring cleavage product[J]. Biochimie, 2006, 88(12): 1899-1908. doi: 10.1016/j.biochi.2006.07.011
    [10]
    Zhang H H, Zhang L, Hu X G, et al. Optimization of ultrasound-assisted extraction of artemisinin from Artemisia annua L. by response surface methodology[J]. Separation Science and Technology, 2014, 49(5): 673-681. doi: 10.1080/01496395.2013.862545
    [11]
    Zheng W, Wang S Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries[J]. Journal of Agricultural and Food Chemistry, 2003, 51(2): 502-509. doi: 10.1021/jf020728u
    [12]
    Gabetta B, Fuzzati N, Griffini A, et al. Characterization of proanthocyanidins from grape seeds[J]. Fitoterapia, 2000, 71(2): 162-175. doi: 10.1016/S0367-326X(99)00161-6
    [13]
    Blankenhorn P R, Murphey W K, Rishel L E, et al. Some mechanical properties of impregnated bark board[J]. Forest Products Journal, 1977, 27(6): 31-38. http://agris.fao.org/openagris/search.do?recordID=US19770201854
    [14]
    Pérez-Jiménez J, Torres J L. Analysis of proanthocyanidins in almond blanch water by HPLC-ESI-QqQ-MS/MS and MALDI-TOF/TOF MS[J]. Food Research International, 2012, 49(2): 798-806. doi: 10.1016/j.foodres.2012.09.005
    [15]
    Ouchemoukh S, Hachoud S, Boudraham H, et al. Antioxidant activities of some dried fruits consumed in Algeria[J]. LWT-Food Science and Technology, 2012, 49(2): 329-332. doi: 10.1016/j.lwt.2012.07.022
    [16]
    Sánchez-Moreno C, Larrauri J A, Saura-Calixto F. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents[J]. Food Research International, 1999, 32(6): 407-412. doi: 10.1016/S0963-9969(99)00097-6
    [17]
    Wada L, Ou B. Antioxidant activity and phenolic content of Oregon caneberries[J]. Journal of Agricultural and Food Chemistry, 2002, 50(12): 3495-3500. doi: 10.1021/jf011405l
    [18]
    Yuan X Y, Gao M Z, Xiao H B, et al. Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves[J]. Food Chemistry, 2012, 133(1): 10-14. doi: 10.1016/j.foodchem.2011.09.071
    [19]
    张少朋, 陈玉保, 赵永彦, 等.响应面法优化Pd/Hβ-Al2O3催化小桐子油一步加氢工艺[J].化工进展, 2017, 36(2): 513-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201702017

    Zhang S P, Chen Y B, Zhao Y Y, et al. Optimization of the process on one-step hydrotreatment of catalytic jatropha oil over Pd/Hβ-Al2O3[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 513-518. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201702017
  • Related Articles

    [1]Xia Wenzhe, Dong Tingting, Sun Liwei. Evaluation of phenolic resources and its antioxidant abilities for seed coats of Acer truncatum from four producing areas[J]. Journal of Beijing Forestry University, 2021, 43(12): 127-135. DOI: 10.12171/j.1000-1522.20210276
    [2]Guo Tian, Zhang Na, Fu Qun, Chai Yangyang, Guo Qingqi. Effects of several assisted extraction methods on extraction effect and antioxidant activity of proanthocyanins from blueberry[J]. Journal of Beijing Forestry University, 2020, 42(9): 139-148. DOI: 10.12171/j.1000-1522.20190466
    [3]Fu Qun, Kuai Bin, Li Lu, Liu Lei, Wang Mengli. Extraction technology of flavonoids from pine shell and its antioxidant activity[J]. Journal of Beijing Forestry University, 2020, 42(8): 141-149. DOI: 10.12171/j.1000-1522.20190452
    [4]ZHANG Nai-xun, YIN Hong-li, ZHAO Xin, LIU Ran, YU Mei-hui, WANG Zhen-yu. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides.[J]. Journal of Beijing Forestry University, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527
    [5]ZHAO Qing, Lu Xiao-fei, ZHU Xiao-ran, ZHANG Na, GUO Qing-qi. Optimization of extraction technology for lilac polyphenols and their antioxidant activity.[J]. Journal of Beijing Forestry University, 2015, 37(10): 125-129. DOI: 10.13332/j.1000-1522.20140174
    [6]ZHU Ming-hua, FANG Gui-zhen, HAN Shi-yan, ZHANG Yan-hua, RONG Hai-hong, GUO Jun, SHI Yong-chun. Lignin separation and antioxidant capacity from Acanthopanax senticosus remainders using acetone.[J]. Journal of Beijing Forestry University, 2012, 34(1): 135-140.
    [7]LU Qi, ZHU Ming-hua, ZU Yuan-gang, ZHANG Ying, ZHANG Xiao-nan, LI Wen-gang, ZU Bai-shi, ZHANG Bao-you. Preparation and antioxidant capacity of high boiling solvent lignin nano-powder.[J]. Journal of Beijing Forestry University, 2011, 33(5): 69-74.
    [8]LU Qi, LIU Wen-jun, ZU Yuan-gang, YANG Lei, ZU Bai-shi, LI Wen-gang, ZHANG Bao-you, ZHU Ming-hua. Lignin separation and antioxidant capacity from Acanthopanax senticosus remainders using high boiling solvent[J]. Journal of Beijing Forestry University, 2011, 33(4): 124-129.
    [9]CHEN Jian, SUN Ai-dong, GAO Xue-juan, TAO Xiao-yun, WANG Shan-shan. .Extraction and antioxidation of anthocyanins from blueberry.[J]. Journal of Beijing Forestry University, 2011, 33(2): 126-129.
    [10]DU Jian, YANG Ying, ZHAO Ming-ye, WANG Jun, CHEN Min. Changes of antioxidant activity of phenolics in Toona sinensis during storage.[J]. Journal of Beijing Forestry University, 2011, 33(2): 120-125.
  • Cited by

    Periodical cited type(9)

    1. 赵一鸣,徐文,安容容,王淼,李沁泽,张颖超. 饲料中单宁、硫代葡萄糖苷和植酸对畜禽的影响及其降解方法. 饲料工业. 2024(07): 119-125 .
    2. 李淼,胡文泽,岳国鑫,郭东旭,石莹,荣海峰,郑徽,马凤鸣. 高聚原花青素降解技术研究进展. 食品工业科技. 2022(07): 417-423 .
    3. 高洁,赵妍. 黑苦荞麦壳高聚原花青素降解及其抗氧化活性分析. 食品研究与开发. 2022(12): 147-154 .
    4. 吕筱,郑天元,韦新月,窦子珊,高晨佳,蔡冉,孟琬星,王汝华. 花生红衣中原花青素的提取工艺与活性研究. 农产品加工. 2021(09): 27-31 .
    5. 姜坤,叶焕烽,叶秦轩,杨海花. 响应面法优化多聚原飞燕草素超声波降解工艺及其抗氧化性的研究. 食品工业科技. 2021(13): 221-229 .
    6. 高晨曦,黄艳,孙威江. 茶叶中原花青素研究进展. 茶叶科学. 2020(04): 441-453 .
    7. 国田,张娜,符群,柴洋洋,郭庆启. 几种辅助提取方式对蓝莓原花青素浸提效果及抗氧化活性的影响. 北京林业大学学报. 2020(09): 139-148 . 本站查看
    8. 李特,宋见喜,张卓睿,姜贵全. 缩合单宁降解方法研究进展. 林产化学与工业. 2020(05): 10-16 .
    9. 卜得新,张方艳,朱桂兰,郭娜,鲁红侠. 几种深色食物中原花青素含量及抗氧化活性的测定和比较. 农产品加工. 2019(15): 66-69 .

    Other cited types(4)

Catalog

    Article views (2605) PDF downloads (39) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return