• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Ming, Zhang Xiaoli, Huo Langning, Gao Linghan. Improved octree filtering algorithm of airborne LiDAR data in forest environment[J]. Journal of Beijing Forestry University, 2018, 40(11): 102-111. DOI: 10.13332/j.1000-1522.20180130
Citation: Yang Ming, Zhang Xiaoli, Huo Langning, Gao Linghan. Improved octree filtering algorithm of airborne LiDAR data in forest environment[J]. Journal of Beijing Forestry University, 2018, 40(11): 102-111. DOI: 10.13332/j.1000-1522.20180130

Improved octree filtering algorithm of airborne LiDAR data in forest environment

More Information
  • Received Date: April 12, 2018
  • Revised Date: September 17, 2018
  • Published Date: October 31, 2018
  • ObjectiveBy airborne LiDAR point cloud data, the 3D coordinates of ground points can be obtained accurately. In order to enhance the accuracy of point cloud filtering, a filter method of point cloud data was proposed by the filtering analysis using airborne LiDAR point cloud data in Dayekou forest area of Gansu Province, western China.
    MethodBased on the octree filtering algorithm, the complex terrain in forest was decomposed into a large number of slopes by the improved model. The accuracy of data segmentation was enhanced by reducing the nodes'size, with retaining the original information of the data. Additionally, for the uneven or tough terrain of forest, the slope analysis was introduced into the filter algorithm, to prevent the undergrowth points from being classified into ground points.
    ResultThe experiment results showed that the method could improve the segmentation accuracy of point cloud data to some extent, and the total errors of filtering in three different terrains were 4.57%, 4.75%, 5.83%, respectively. The proved filtering model was practical to filter point cloud under different terrains in forest area.
    ConclusionThus, the improved octree filtering algorithm proposed in this paper can make full use of the data structure features to achieve fast and high-precision filtering. Meanwhile, it saves time and cost, and lays the foundation for the subsequent extraction of forest parameters.
  • [1]
    赵峰, 庞勇, 李增元, 等.机载激光雷达和航空数码影像单株木树高提取[J].林业科学, 2009, 45(10): 81-87.

    Zhao F, Pang Y, Li Z Y, et al. Extraction of individual tree height using a combination of aerial digital camera imagery and LiDAR[J]. Scientia Silvae Sinicae, 2009, 45(10): 81-87.
    [2]
    Akel N A, Ziberstein O, Doytsher Y. Automatic DTM extraction form dense raw Lidar in urban areas[C]//Proceedings of FIG working week, Paris: International Federation of Surveyors, 2003.
    [3]
    Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4):110-117.
    [4]
    Brandtberg T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61: 325-340. doi: 10.1016/j.isprsjprs.2006.10.006
    [5]
    Falcao A O, Santos M P, Borges J G. A real-time visualization tool for forest ecosystem management decision support[J]. Computers and Electronics in Agriculture, 2006, 53:3-12. doi: 10.1016/j.compag.2006.03.003
    [6]
    Wack R, Wimmer A. Digital terrain models from airborne laser scanner data: a grid based approach[J].International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(3/B): 293-296. http://core.ac.uk/display/21807115
    [7]
    庞勇, 李增元, Sun G Q, 等.地形对大光斑激光雷达森林回波影响研究[J].林业科学研究, 2007, 20(4):464-468. doi: 10.3321/j.issn:1001-1498.2007.04.004

    Pang Y, Li Z Y, Sun G Q, et al. Effects of terrain on the large footprint lidar waveform of forests[J]. Forest Research, 2007, 20(4):464-468. doi: 10.3321/j.issn:1001-1498.2007.04.004
    [8]
    汪垚, 张志玉, 倪文俭, 等.基于机载LiDAR数据的林下地形提取算法比较与组合分析[J].北京林业大学学报, 2017, 39(12):25-35. doi: 10.13332/j.1000--1522.20170300

    Wang Y, Zhang Z Y, Ni W J, et al. Comparison and analysis of forest terrain extraction algorithm based on airborne LiDAR data[J]. Journal of Beijing Forestry University, 2017, 39(12):25-35. doi: 10.13332/j.1000--1522.20170300
    [9]
    唐菲菲, 刘经南, 张小红, 等.基于体素的森林地区机载LiDAR数据DTM提取[J].北京林业大学学报, 2009, 31(1):55-59. doi: 10.3321/j.issn:1000-1522.2009.01.010

    Tang F F, Liu J N, Zhang X H, et al. DTM extraction of airborne LiDAR data in forest area based voxel[J]. Journal of Beijing Forestry University, 2009, 31(1):55-59. doi: 10.3321/j.issn:1000-1522.2009.01.010
    [10]
    Weidner U, Foerstner W. Towards automatic building extraction from high-resolution digital elevation models[J].ISPRS Journal of Photogrammetry and Remote Sensing, 1995, 50(4): 38-49. doi: 10.1016/0924-2716(95)98236-S
    [11]
    Hu Y, Tao C V. Hierarchical recovery of digital terrain models from single and multiple return LiDAR data[J]. Photogrammetry Engineering & Remote Sensing, 2005, 71:425-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9de8cca98c142f02578d8a3b126313d
    [12]
    张熠斌, 隋立春, 曲佳, 等.基于数学形态学算法的机载LiDAR点云数据快速滤波[J].测绘通报, 2009(5):16-19. http://d.old.wanfangdata.com.cn/Periodical/chtb200905005

    Zhang Y B, Sui L C, Qu J, et al. Fast filtering of airborne LiDAR point cloud data based on mathematical morphology algorithm[J].Bulletin of Surveying and Mapping, 2009(5):16-19. http://d.old.wanfangdata.com.cn/Periodical/chtb200905005
    [13]
    周晓明.机载激光雷达点云数据滤波算法的研究与应用[D].郑州: 解放军信息工程大学, 2011.

    Zhou X M. Research and application of Airborne LIDAR point cloud data filtering algorithm[D]. Zhengzhou: The PLA Information Engineering University, 2011.
    [14]
    王芃芃.机载LiDAR点云数据滤波算法研究[D].西安: 长安大学, 2011.

    Wang P P. Research on filtering algorithm of airborne LiDAR point cloud data[D]. Xi'an: Chang'an University, 2011.
    [15]
    Vosselman G.Slope based filtering of laser altimetry data[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(3): 935-942. http://www.oalib.com/references/16115423
    [16]
    Lee H, Slatton K C, Roth B E, et al.Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests[J]. International Journal of Remote Sensing, 2010, 31(1):117-139. doi: 10.1080/01431160902882561
    [17]
    Sithole G, Vosselman G. Filtering of laser altimetry data using a slope adaptive filter[J].International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2001, 34(3/W4): 203-210. https://core.ac.uk/display/21519779
    [18]
    张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社, 2007.

    Zhang X H. Theory and method of airborne lidar measurement technology[M]. Wuhan:Wuhan University Publishing House, 2007.
    [19]
    陈磊, 赵书河.一种改进的基于平面拟合的机载激光LIDAR点云滤波方法[J].遥感技术与应用, 2011, 26(1): 117-122. http://d.old.wanfangdata.com.cn/Conference/7497078

    Chen L, Zhao S H. An improved filtering method of airborne LiDAR point cloud data based on plane fitting[J]. Remote Sensing Technology and Application, 2011, 26(1): 117-122. http://d.old.wanfangdata.com.cn/Conference/7497078
    [20]
    马鼎, 李斌兵.黄土沟壑区切沟植被的激光点云滤波及地形构建[J].农业工程学报, 2013, 29(15):162-171. doi: 10.3969/j.issn.1002-6819.2013.15.020

    Ma D, Li B B. Laser point cloud filtering and topographic construction of gully vegetation in loess gully region[J]. Journal of Agricultural Engineering, 2013, 29(15):162-171. doi: 10.3969/j.issn.1002-6819.2013.15.020
    [21]
    Mongus D, Žalik B. Parameter-free ground filtering of LiDAR data for automatic DTM generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:1-12. doi: 10.1016/j.isprsjprs.2011.10.002
    [22]
    Pingel T J, Clarke K C, McBride W A. An improved simple morphological filter for the terrain classification of airborne LIDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77: 21-30. doi: 10.1016/j.isprsjprs.2012.12.002
    [23]
    曹红新.机载LiDAR数据滤波方法研究[D].成都: 西南交通大学, 2011.

    Cao H X. The method study of LiDAR data filtering[D]. Chengdu: Southwest Jiaotong University, 2011.
    [24]
    Lafarge F, Descombes X, Zerubia J, et al. Structural approach for building reconstruction from a single DSM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1):135-147. doi: 10.1109/TPAMI.2008.281
    [25]
    周煜, 雷雨, 杜发荣, 等.基于非均匀细分的散乱点云数据精简算法[J].农业机械学报, 2009, 40(9):193-196. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb200909039

    Zhou Y, Lei Y, Du F R, et al. Algorithm of scattered point cloud data reduction based on non-uniform subdivision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9):193-196. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb200909039
    [26]
    杨霄鹏.基于动态八叉树的三维离散元法邻居搜索方法研究[D].长春: 吉林大学, 2006.

    Yang X P. A proximity query algorithm for three-dimensional DEM based on dynamic octree[D]. Changchun: Jilin University, 2006.
    [27]
    邸华, 刘建泉, 贺晓香.祁连山保护区近56年降水量变化稳定性探析[J].甘肃科技, 2014, 30(18): 58-59. doi: 10.3969/j.issn.1000-0952.2014.18.020

    Di H, Liu J Q, He X X. Analysis of the stability of precipitation in Qilian Mountains Reserve in recent 56 years[J]. Gansu Science and Technology, 2014, 30(18): 58-59. doi: 10.3969/j.issn.1000-0952.2014.18.020
    [28]
    牛赞, 刘贤德, 敬文茂, 等.祁连山大野口流域气温、降水、河川径流特征分析[J].干旱区地理, 2014, 37(5): 931-938. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201405009

    Niu Z, Liu X D, Jing W M, et al. The characteristics analysis of temperature, precipitation and river runoff in the Dayekou, Qilian Mountains[J]. Arid Region Geography, 2014, 37(5):931-938. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201405009
    [29]
    李新, 马国明, 王建, 等.黑河流域遥感-地面观测同步试验:科学目标与试验方案[J].地球科学进展, 2008, 23(9): 897-914. doi: 10.3321/j.issn:1001-8166.2008.09.001

    Li X, Ma G M, Wang J, et al. Remote sensing and ground observation synchronous experiments in Heihe Basin: scientific objectives and test plans[J]. Progress in Earth Sciences, 2008, 23(9):897-914. doi: 10.3321/j.issn:1001-8166.2008.09.001
    [30]
    张佳杰, 黄海端.基于密集型区域的八叉树划分算法[J].科技传播, 2012(2):138-139. http://d.old.wanfangdata.com.cn/Periodical/kjcb201202110

    Zhang J J, Huang H D. Octree partitioning algorithm based on dense region[J].Science and Technology Communication, 2012(2):138-139. http://d.old.wanfangdata.com.cn/Periodical/kjcb201202110
    [31]
    胡敏捷, 谢洪.海量点云数据管理方法的研究[J].船舶设计通讯, 2013, 136(2):62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbsjtx201302013

    Hu M J, Xie H. Massive point cloud data management research[J]. Journal of Ship Design, 2013, 136(2): 62-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbsjtx201302013
    [32]
    任娜.基于八叉树的复杂矿体块体模型构建方法研究[D].北京: 中国地质大学, 2012.

    Ren N. Research on construction method of block model for complicated ore body based on the octree[D].Beijing: China University of Geosciences, 2012.
    [33]
    丑强.虚拟环境中基于八叉树的碰撞检测问题[D].长春: 吉林大学, 2007.

    Chou Q. Collision detection in virtual environment based on octree[D]. Changchun: Jilin University, 2007.
    [34]
    高涛.基于八叉树模型的水下机器人三维全局路径规划研究[D].哈尔滨: 哈尔滨工程大学, 2003.

    Gao T. The research of octree-based 3-D global path planning of autonomous underwater vehicle[D].Harbin: Harbin Engineering University, 2003.
    [35]
    陈永枫.基于机载LiDAR点云数据的建筑物重建技术研究[D].郑州: 解放军信息工程大学, 2013.

    Chen Y F. Research on airborne LiDAR points cloud data building reconstruction technology[D]. Zhengzhou: PLA Information Engineering University, 2013.
    [36]
    Popescu S C. Estimating biomass of individual pine trees using airborne LiDAR[J]. Biomass and Bioenergy, 2007, 31(9):646-655. doi: 10.1016/j.biombioe.2007.06.022
    [37]
    杨应, 苏国中, 周梅.茂密植被区域LiDAR点云数据滤波方法研究[J].遥感信息, 2010(6):9-13. doi: 10.3969/j.issn.1000-3177.2010.06.003

    Yang Y, Su G Z, Zhou M. The airborne LiDAR point clouds data filtering method of the dense forest area[J]. Remote Sensing Information, 2010(6):9-13. doi: 10.3969/j.issn.1000-3177.2010.06.003
    [38]
    周淑芳, 李增元, 范文义, 等.基于机载激光雷达数据的DEM获取及应用[J].遥感技术与应用, 2007, 22(3):356-360. doi: 10.3969/j.issn.1004-0323.2007.03.010

    Zhou S F, Li Z Y, Fan W Y, et al. DEM extraction and its application based on airborne lidar data[J]. Remote Sensing Technology and Application, 2007, 22(3):356-360. doi: 10.3969/j.issn.1004-0323.2007.03.010
    [39]
    Elmqvist M, Jungert E, Lantz F, et al.Terrain modelling and analysis using laser scanner data[J].International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2001, 34(3/W4): 219-226. https://www.ideals.illinois.edu/bitstream/handle/2142/12984/NSEL.Report.015.pdf?sequence%3D2
    [40]
    Pfeifer N, Reiter T, Briese C, et al. Interpolation of high quality ground models from laser scanner data in forested areas[J]. International Archives of Photogrammetry and Remote Sensing, 1999, 32(3/W14): 31-36. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.155.2797
    [41]
    Shao Y C. Ground point selection and building detection from airborne LiDAR data[D]. Taiwan: National Central University, 2007.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1696) PDF downloads (34) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return