• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Dandan, Guan Huiyuan, Huang Qiongtao. Effects of thermal treatment on deformation fixation and properties of surface densified wood[J]. Journal of Beijing Forestry University, 2018, 40(7): 121-128. DOI: 10.13332/j.1000-1522.20180175
Citation: Liu Dandan, Guan Huiyuan, Huang Qiongtao. Effects of thermal treatment on deformation fixation and properties of surface densified wood[J]. Journal of Beijing Forestry University, 2018, 40(7): 121-128. DOI: 10.13332/j.1000-1522.20180175

Effects of thermal treatment on deformation fixation and properties of surface densified wood

More Information
  • Received Date: May 29, 2018
  • Revised Date: June 20, 2018
  • Published Date: June 30, 2018
  • ObjectiveThermal treatment at high temperature is a widely used method for deformation fixation of compressed wood. Wood is always treated as a whole in previous studies, but wood treated as a whole takes a long time and wastes a lot of energy, and only a few millimeters of surface densified layer need to be fixed. Therefore, it is necessary to explore a method for deformation fixation of surface densified wood.
    MethodIn this study, hot press was used for surface thermal treatment of surface densified wood, then spring-back, surface hardness, abrasion resistance, wood color and chemical composition of the specimens treated by different conditions were measured, effects of thermal treatment on deformation fixation and properties of surface densified wood were discussed.
    ResultThe results showed that: effects of thermal treatment on deformation fixation of surface densified wood were significant, spring-back of moisture absorption, water absorption and water boiling absorption all decreased with the increase of processing temperature and the extension of processing time. Surface hardness and abrasion resistance would be reduced when processing temperature was above 200℃ and processing time was extended. With the increase of processing temperature and the extension of processing time, the absolute value of brightness, red green ratio index and yellow blue ratio index increased, chromatic aberration also increased, wood color got darker. Absorbance of each absorption peak decreased after thermal treatment, and the decrease was more obvious with the increase of processing temperature and the extension of processing time. Cellulose, hemicellulose and lignin of wood were reduced because of pyrolysis reaction, and the number of hydroxyl groups and carbonyl groups affecting the dimensional stability of wood also correspondingly decreased under high temperature.
    ConclusionThermal treatment could effectively fix the deformation of surface densified wood, however, increasing processing temperature and extending processing time would lead to the decrease of hardness and abrasion resistance of wood surface, and the change of wood color.
  • [1]
    Tjeerdsma B F, Militiz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Als Roh-Und Werkstoff, 2005, 63(2): 102-111. doi: 10.1007/s00107-004-0532-8
    [2]
    王洁瑛, 赵广杰, 杨琴玲, 等.饱水和气干状态杉木的压缩成型及其热处理永久固定[J].北京林业大学学报, 2000, 22(1): 72-75. doi: 10.3321/j.issn:1000-1522.2000.01.015

    Wang J Y, Zhao G J, Yang Q L, et al. Compression and permanent fixation with heat treatment of China fir under water-saturated condition and air-dried condition[J]. Journal of Beijing Forestry University, 2000, 22(1): 72-75. doi: 10.3321/j.issn:1000-1522.2000.01.015
    [3]
    陈太安, 徐忠勇, 王昌命, 等.热处理对表层压缩云南松木材性能的影响[J].木材工业, 2012, 26(5): 45-48. doi: 10.3969/j.issn.1001-8654.2012.05.011

    Chen T A, Xu Z Y, Wang C M, et al. Effect of heat treatment on properties of surface-densified Pinus yunnanensis samples[J]. China Wood Industry, 2012, 26(5): 45-48. doi: 10.3969/j.issn.1001-8654.2012.05.011
    [4]
    Laine K, Rautkari L, Hughes M, et al. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment[J]. European Journal of Wood and Wood Products, 2013, 71(1): 17-23. doi: 10.1007/s00107-012-0647-2
    [5]
    邹国政.速生杨木表面密实、定型工艺的研究[D].南京: 南京林业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10298-1015809294.htm

    Zou G Z. Study on surface compression and fixing deformation of fast-growing poplar lumber[D]. Nanjing: Nanjing Forestry University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10298-1015809294.htm
    [6]
    高志强, 张耀明, 吴忠其, 等.加压热处理对表层压缩杨木变形回弹的影响[J].木材工业, 2017, 31(2): 24-28. http://d.old.wanfangdata.com.cn/Periodical/mcgy201702006

    Gao Z Q, Zhang Y M, Wu Z Q, et al. Effect of pressurized heat treatment on spring-back of surface compressed poplar wood[J]. China Wood Industry, 2017, 31(2): 24-28. http://d.old.wanfangdata.com.cn/Periodical/mcgy201702006
    [7]
    夏捷.毛白杨木材层状压缩位置和厚度可控性及其变形固定[D].北京: 中国林业科学研究院, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82201-1014331755.htm

    Xia J. Controllability of location and thickness and deformation fixation of Populus layered compression[D]. Beijing: Chinese Academy of Forestry, 2014. http://cdmd.cnki.com.cn/Article/CDMD-82201-1014331755.htm
    [8]
    王艳伟, 黄荣凤, 张耀明.水热控制下杨木的表层密实化及固定技术[J].木材工业, 2012, 26(2): 18-21. http://www.cnki.com.cn/Article/CJFDTotal-MCGY201202006.htm

    Wang Y W, Huang R F, Zhang Y M. Surface densification and heat fixation of Chinese white poplar by hydro-thermal control[J]. China Wood Industry, 2012, 26(2): 18-21. http://www.cnki.com.cn/Article/CJFDTotal-MCGY201202006.htm
    [9]
    Yi X H, Kinoshita N, Yoshinobu M, et al. Sugi rotary veneers compressed by hydro-thermal treatment with an airtight device using moisture in the veneers[J]. Journal of the Society of Materials Science, Japan, 2004, 53(6): 686-691. doi: 10.2472/jsms.53.686
    [10]
    韩英磊.木材及其处理材耐光色牢度的研究[D].北京: 中国林业科学研究院, 2012. http://cdmd.cnki.com.cn/Article/CDMD-82201-1012423560.htm

    Han Y L. Study on colorfastness to light of wood and modified wood[D]. Beijing: Chinese Academy of Forestry, 2012. http://cdmd.cnki.com.cn/Article/CDMD-82201-1012423560.htm
    [11]
    Inoue. The large deformation of wood transverse grain and permanent fixation of deformation[D]. Kyoto: Kyoto University, 1994.
    [12]
    陈太安, 蒋明, 王昌命, 等.后期热处理对压缩木尺寸稳定性的影响[J].西南林业大学学报, 2011, 31(4): 77-79. doi: 10.3969/j.issn.2095-1914.2011.04.016

    Chen T A, Jiang M, Wang C M, et al. Effect of post-heat treatment on dimensional stability of compressed wood[J]. Journal of Southwest Forestry University, 2011, 31(4): 77-79. doi: 10.3969/j.issn.2095-1914.2011.04.016
    [13]
    唐晓淑.热处理变形固定过程中杉木压缩木材的主成分变化及化学应力松弛[D].北京: 北京林业大学, 2004. http://d.wanfangdata.com.cn/Thesis/Y668363

    Tang X S. Influence of heat fixation on the major components and chemical stress relaxation of compressed Chinese fir wood[D]. Beijing: Beijing Forestry University, 2004. http://d.wanfangdata.com.cn/Thesis/Y668363
    [14]
    朱林峰, 刘元, 罗玉华, 等.粗皮桉不同家系木材的表面视觉性质[J].中南林业科技大学学报, 2004, 24(4): 41-46. doi: 10.3969/j.issn.1673-923X.2004.04.026

    Zhu L F, Liu Y, Luo Y H, et al. Study of the surface visual quality of different genealogies of Eucalyptus pellita[J]. Journal of Central South Forestry University, 2004, 24(4): 41-46. doi: 10.3969/j.issn.1673-923X.2004.04.026
    [15]
    汤顺青.色度学[M].北京:北京理工大学出版社, 1990: 97-102.

    Tang S Q. Colorimetric[M]. Beijing: Beijing Institute of Technology Press, 1990: 97-102.
    [16]
    黄荣凤, 吕建雄, 曹永建, 等.高温热处理对毛白杨木材化学成分含量的影响[J].北京林业大学学报, 2010, 32(3): 155-160. http://j.bjfu.edu.cn/article/id/9395

    Huang R F, Lü J X, Cao Y J, et al. Impact of heat treatment on chemical composition of Chinese white poplar wood[J]. Journal of Beijing Forestry University, 2010, 32(3): 155-160. http://j.bjfu.edu.cn/article/id/9395
    [17]
    Stamm A J. Wood and cellulose science[M]. New York: Wood Press, 1964.
    [18]
    Tjeerdsma B F, Militiz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Als Roh-Und Werkstoff, 2005, 63(2): 102-111. doi: 10.1007/s00107-004-0532-8
    [19]
    李贤军, 刘元, 高建民, 等.高温热处理木材的FTIR和XRD分析[J].北京林业大学学报, 2009, 31(增刊1): 104-107. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY2009S1023.htm

    Li X J, Liu Y, Gao J M, et al. FTIR and XRD for wood with high-temperature heating treatment[J]. Journal of Beijing Forestry University, 2009, 31(Suppl.1): 104-107. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLY2009S1023.htm
  • Cited by

    Periodical cited type(7)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    2. 张晓姗,高嘉,王洪永,王霞,庞薇,陈寅,杜振宇,马风云,马丙尧. 我国栎树引种及其营养生长研究进展. 江苏林业科技. 2024(02): 48-52 .
    3. 邓坦,李文博,张向阳,王新建. 河南省栎类经营技术研究与建议. 河南林业科技. 2023(01): 1-5+30 .
    4. 廖科,刘振华,童方平,陈瑞,吴敏,蒋龙,龚发武,李贵. 不同混交比例对栎类混交林生长和土壤养分的影响. 中南林业科技大学学报. 2023(09): 80-88 .
    5. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林的树高—胸径模型. 林业与环境科学. 2023(05): 7-14 .
    6. 娄明华,白超,杨同辉. 宁波石栎-木荷天然常绿阔叶混交林的树高-胸径模型. 林业与环境科学. 2021(04): 46-54 .
    7. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 .

    Other cited types(4)

Catalog

    Article views (2360) PDF downloads (53) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return