• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. DOI: 10.13332/j.1000-1522.20180253
Citation: Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. DOI: 10.13332/j.1000-1522.20180253

Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer

More Information
  • Received Date: August 02, 2018
  • Revised Date: September 02, 2018
  • Published Date: October 31, 2018
  • ObjectiveThe temperature variation characteristics of electric heating engineered wood flooring (EHEWF) with different electrothermal layer positions and different structures were investigated in this study, which provides theoretical reference for electrothermal performance and structure optimization of EHEWF.
    MethodCarbon fiber paper was used as heating element to manufactured EHEWF by hot pressing method. The time-temperature effect, temperature unevenness, electric-to-radiant power transfer efficiency and surface grid temperature were investigated and analyzed after heating, also simulated the two-dimensional and three-dimensional distribution of surface temperature. The front and back surface temperature rise law of different structure EHEWF were explored and fitted power-function equation of time-temperature curves.
    ResultThe results showed that the surface temperature increased with the increase of conductive time, and finally stabilized. After the power was cut off, the temperature began to decrease rapidly until it was in equilibrium with the ambient temperature. As the position of electrothermal layer moved down, the surface temperature decreased after heating stabilized, the electric-to-radiant power transfer efficiency was also reduced accordingly. When the power density was respectively 200, 300, 400 and 500 W/m2, the surface temperature of electrothermal layer locating near surface layer was 17.2%, 21.8%, 24.8% and 26.8% higher than the bottom layer. With the increase of power density, the temperature unevenness and electric-to-radiant power transfer efficiency also increased, the electric-to-radiant power transfer efficiency of electrothermal layer locating near surface layer was 95.6% as power density 500 W/m2. Two-dimensional and three-dimensional simulation showed that the overall trend of surface temperature distribution was middle higher than periphery. The temperature trend was especially prominent for electrothermal layer locating surface layer and there was a phenomenon of heat accumulation. The front surface temperature of different structural EHEWF increased with the increase of the load time. The thicker the back surface wood was, the higher the front surface temperature was, and the lower the back temperature was. The fitting equation showed that the time-temperature change was power function, and coefficient of determination was up to 0.999 9.
    ConclusionThe electrothermal layer location and floor structure have significant effects on the surface temperature and electric-to-radiant power transfer efficiency. When the electrothermal layer is located near the surface layer, it is more beneficial to improve the electrothermal performance.
  • [1]
    Claes B Q. Conversion of electric heating in buildings: an unconventional alternative[J]. Energy & Buildings, 2008, 40(12): 2188-2195. http://www.ei.lehigh.edu/learners/energy/readings/solar.pdf
    [2]
    凌继红, 张于峰, 董颖, 等.低温热水地板辐射供暖系统的理论研究[J].工程热物理学报, 2002, 23(增刊1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm

    Ling J H, Zhang Y F, Dong Y, et al. Theoretical study on low temperature hot water floor panel heating system[J]. Journal of Engineering Thermophysics, 2002, 23(Suppl.1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm
    [3]
    李国建, 冯国会, 朱能, 等.新型相变储能电热地板采暖系统[J].沈阳建筑大学学报(自然科学版), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027

    Li G J, Feng G H, Zhu N, et al. Experiment of the new phase-change heat-storage electric heating floor system[J]. Journal of Shengyang Jianzhu University (Natural Science), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027
    [4]
    蔺洁, 谢静超, 陈超, 等.低温热水地板辐射换热器传热简化模型的改进[J].北京工业大学学报, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020

    Lin J, Xie J C, Chen C, et al. Improvement of the simplified heat transfer model for low-temperature hot water floor heat exchanger[J]. Journal of Beijing University of Technology, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020
    [5]
    Jeon G W, Jeong Y G. Electric heating films based on m-aramid nanocomposites containing hybrid fillers of graphene and carbon nanotube[J]. Journal of Materials Science, 2013, 48(11): 4041-4049. doi: 10.1007/s10853-013-7216-x
    [6]
    杨保铈, 贺绍均, 王丰, 等.杉木集成材薄板制备电热地板的热工性能[J].林业工程学报, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010

    Yang B S, He S J, Wang F, et al. Thermal performance of electrically heated flooring prepared by thin Chinese fir glulam[J]. Journal of Forestry Engineering, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010
    [7]
    袁全平, 梁善庆, 曾宇, 等.内置电热层电采暖木竹地板技术现状[J].林产工业, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002

    Yuan Q P, Liang S Q, Zeng Y, et al. Discussion on technology status of electric heating wood and bamboo floor with built-in electrothermal layer[J]. China Forest Products Industry, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002
    [8]
    肖瑞崇, 陈玉和, 包永洁, 等.竹木电热复合材料的通电老化性能研究[J].木材工业, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004

    Xiao R C, Chen Y H, Bao Y J, et al. Electrifying aging performance of bamboo-wood thermoelectric composites[J]. China Wood Industry, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004
    [9]
    袁全平, 梁善庆, 傅峰.碳纤维电热功能复合纤维板的制备工艺[J].木材工业, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003

    Yuan Q P, Liang S Q, Fu F. Electric heating composites made from carbon fiber paper and fiberboard[J]. China Wood Industry, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003
    [10]
    张泽前, 吴再兴, 陈玉和, 等.电热竹木复合地板的制备工艺[J].木材工业, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003

    Zhang Z Q, Wu Z X, Chen Y H, et al. Manufacturing technology for electrically heating engineered flooring made from bamboo and wood[J]. China Wood Industry, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003
    [11]
    黄成建, 包永洁, 李能, 等.不同胶黏剂竹木复合电热地板的基本特性[J].浙江农林大学学报, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023

    Huang C J, Bao Y J, Li N, et al. Adhesives used to make bamboo/wood composite electro-thermal plywood[J]. Journal of Zhejiang A & F University, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023
    [12]
    阙泽利, 赵晓旭, 李哲瑞, 等.小径级杉木制备内置碳纤维电热线地热地板[J].木材工业, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002

    Que Z L, Zhao X X, Li Z R, et al. Electrically heated flooring made with hexagon glulam from small-diameter Chinese fir[J]. China Wood Industry, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002
    [13]
    华毓坤, 傅峰.导电胶合板的研究[J].林业科学, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012

    Hua Y K, Fu F. Studies on electrically conductive plywood[J]. Scientia Silvae Sinicae, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012
    [14]
    Yuan Q P, Fu F. Application of carbon fiber paper in integrated wooden electric heating composite[J]. Bioresources, 2014, 9(3): 5662-5675.
    [15]
    周兆兵, 朱兆龙, 薛宏, 等.内置式发热实木复合地板的电热性能[J].东北林业大学学报, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011

    Zhou Z B, Zhu Z L, Xue H, et al. Electrothermal performance of built-in heating parquet[J]. Journal of Northeast Forestry University, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011
    [16]
    中华人民共和国住房和城乡建设部.低温辐射电热膜: JG/T 286—2010[S].北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Electric radiant heating film for low temperature: JG/T 286—2010[S]. Beijing: Standards Press of China, 2010.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.红外辐射加热器试验方法: GB/T 7287—2008[S].北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method of infrared heater: GB/T 7287—2008[S]. Beijing: Standards Press of China, 2010.
    [18]
    陈瑞英, 谢拥群, 杨庆贤, 等.木材横纹导热系数的类比法研究[J].林业科学, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021

    Chen R Y, Xie Y Q, Yang Q X, et al. Study on wood thermal conductivity in transverse direction by analogism[J]. Scientia Silvae Sinicae, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021
    [19]
    姚武, 张超.碳纤维水泥基材料的电热效应[J].材料开发与应用, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005

    Yao W, Zhang C. Electro-thermal effect of carbon fiber reinforced cement composites[J]. Development and Application of Materials, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005
    [20]
    Zhang H, Song X. Operating characteristic analysis on the ultra-thin low temperature floor-heating system[J]. Frontiers of Structural & Civil Engineering, 2013, 7(2):127-132.
    [21]
    施志钢, 张伟光, 刘龙.电热膜启动特性和局部聚热的实验研究[J].暖通空调, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023

    Shi Z G, Zhang W G, Liu L. Experimental study on startup characteristics and local heat accumulation of electric radiant heating film[J]. Heating Ventilating & Air Conditioning, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023
    [22]
    袁全平, 木质电热复合材料的电热响应机理及性能研究[D].北京: 中国林业科学研究院, 2015: 115-119.

    Yuan Q P. Performance and electric heating response mechanism of wooden electric heating composites.[D]. Beijing: Chinese Academy of Forestry, 2015: 115-119.
  • Related Articles

    [1]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250
    [4]Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    [5]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324
    [8]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [9]LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27.
    [10]WANG Qi, PENG Lu, YAN Shan-chun, LIAO Yue-zhi. Electroantennogram and behavioral responses of Pissodes nitidus to terpene volatiles of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2011, 33(4): 91-95.
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (1609) PDF downloads (17) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return