• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. DOI: 10.13332/j.1000-1522.20180253
Citation: Liang Shanqing, Li Sicheng, Chai Yuan, Fu Feng. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112-122. DOI: 10.13332/j.1000-1522.20180253

Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer

More Information
  • Received Date: August 02, 2018
  • Revised Date: September 02, 2018
  • Published Date: October 31, 2018
  • ObjectiveThe temperature variation characteristics of electric heating engineered wood flooring (EHEWF) with different electrothermal layer positions and different structures were investigated in this study, which provides theoretical reference for electrothermal performance and structure optimization of EHEWF.
    MethodCarbon fiber paper was used as heating element to manufactured EHEWF by hot pressing method. The time-temperature effect, temperature unevenness, electric-to-radiant power transfer efficiency and surface grid temperature were investigated and analyzed after heating, also simulated the two-dimensional and three-dimensional distribution of surface temperature. The front and back surface temperature rise law of different structure EHEWF were explored and fitted power-function equation of time-temperature curves.
    ResultThe results showed that the surface temperature increased with the increase of conductive time, and finally stabilized. After the power was cut off, the temperature began to decrease rapidly until it was in equilibrium with the ambient temperature. As the position of electrothermal layer moved down, the surface temperature decreased after heating stabilized, the electric-to-radiant power transfer efficiency was also reduced accordingly. When the power density was respectively 200, 300, 400 and 500 W/m2, the surface temperature of electrothermal layer locating near surface layer was 17.2%, 21.8%, 24.8% and 26.8% higher than the bottom layer. With the increase of power density, the temperature unevenness and electric-to-radiant power transfer efficiency also increased, the electric-to-radiant power transfer efficiency of electrothermal layer locating near surface layer was 95.6% as power density 500 W/m2. Two-dimensional and three-dimensional simulation showed that the overall trend of surface temperature distribution was middle higher than periphery. The temperature trend was especially prominent for electrothermal layer locating surface layer and there was a phenomenon of heat accumulation. The front surface temperature of different structural EHEWF increased with the increase of the load time. The thicker the back surface wood was, the higher the front surface temperature was, and the lower the back temperature was. The fitting equation showed that the time-temperature change was power function, and coefficient of determination was up to 0.999 9.
    ConclusionThe electrothermal layer location and floor structure have significant effects on the surface temperature and electric-to-radiant power transfer efficiency. When the electrothermal layer is located near the surface layer, it is more beneficial to improve the electrothermal performance.
  • [1]
    Claes B Q. Conversion of electric heating in buildings: an unconventional alternative[J]. Energy & Buildings, 2008, 40(12): 2188-2195. http://www.ei.lehigh.edu/learners/energy/readings/solar.pdf
    [2]
    凌继红, 张于峰, 董颖, 等.低温热水地板辐射供暖系统的理论研究[J].工程热物理学报, 2002, 23(增刊1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm

    Ling J H, Zhang Y F, Dong Y, et al. Theoretical study on low temperature hot water floor panel heating system[J]. Journal of Engineering Thermophysics, 2002, 23(Suppl.1):145-148. http://cdmd.cnki.com.cn/Article/CDMD-10703-1018861380.htm
    [3]
    李国建, 冯国会, 朱能, 等.新型相变储能电热地板采暖系统[J].沈阳建筑大学学报(自然科学版), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027

    Li G J, Feng G H, Zhu N, et al. Experiment of the new phase-change heat-storage electric heating floor system[J]. Journal of Shengyang Jianzhu University (Natural Science), 2006, 22(2):294-298. http://d.old.wanfangdata.com.cn/Periodical/syjzgcxyxb200602027
    [4]
    蔺洁, 谢静超, 陈超, 等.低温热水地板辐射换热器传热简化模型的改进[J].北京工业大学学报, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020

    Lin J, Xie J C, Chen C, et al. Improvement of the simplified heat transfer model for low-temperature hot water floor heat exchanger[J]. Journal of Beijing University of Technology, 2013, 39(7):1078-1083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjgydxxb201307020
    [5]
    Jeon G W, Jeong Y G. Electric heating films based on m-aramid nanocomposites containing hybrid fillers of graphene and carbon nanotube[J]. Journal of Materials Science, 2013, 48(11): 4041-4049. doi: 10.1007/s10853-013-7216-x
    [6]
    杨保铈, 贺绍均, 王丰, 等.杉木集成材薄板制备电热地板的热工性能[J].林业工程学报, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010

    Yang B S, He S J, Wang F, et al. Thermal performance of electrically heated flooring prepared by thin Chinese fir glulam[J]. Journal of Forestry Engineering, 2016, 1(1):46-50. http://d.old.wanfangdata.com.cn/Periodical/lykjkf201601010
    [7]
    袁全平, 梁善庆, 曾宇, 等.内置电热层电采暖木竹地板技术现状[J].林产工业, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002

    Yuan Q P, Liang S Q, Zeng Y, et al. Discussion on technology status of electric heating wood and bamboo floor with built-in electrothermal layer[J]. China Forest Products Industry, 2015, 42(8):6-9, 17. doi: 10.3969/j.issn.1001-5299.2015.08.002
    [8]
    肖瑞崇, 陈玉和, 包永洁, 等.竹木电热复合材料的通电老化性能研究[J].木材工业, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004

    Xiao R C, Chen Y H, Bao Y J, et al. Electrifying aging performance of bamboo-wood thermoelectric composites[J]. China Wood Industry, 2017, 31(4):19-23. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704004
    [9]
    袁全平, 梁善庆, 傅峰.碳纤维电热功能复合纤维板的制备工艺[J].木材工业, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003

    Yuan Q P, Liang S Q, Fu F. Electric heating composites made from carbon fiber paper and fiberboard[J]. China Wood Industry, 2017, 31(4):14-18. http://d.old.wanfangdata.com.cn/Periodical/mcgy201704003
    [10]
    张泽前, 吴再兴, 陈玉和, 等.电热竹木复合地板的制备工艺[J].木材工业, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003

    Zhang Z Q, Wu Z X, Chen Y H, et al. Manufacturing technology for electrically heating engineered flooring made from bamboo and wood[J]. China Wood Industry, 2016, 30(1):14-17. doi: 10.3969/j.issn.1001-8654.2016.01.003
    [11]
    黄成建, 包永洁, 李能, 等.不同胶黏剂竹木复合电热地板的基本特性[J].浙江农林大学学报, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023

    Huang C J, Bao Y J, Li N, et al. Adhesives used to make bamboo/wood composite electro-thermal plywood[J]. Journal of Zhejiang A & F University, 2017, 34(2):369-373. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201702023
    [12]
    阙泽利, 赵晓旭, 李哲瑞, 等.小径级杉木制备内置碳纤维电热线地热地板[J].木材工业, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002

    Que Z L, Zhao X X, Li Z R, et al. Electrically heated flooring made with hexagon glulam from small-diameter Chinese fir[J]. China Wood Industry, 2015, 29(4):9-13. doi: 10.3969/j.issn.1001-8654.2015.04.002
    [13]
    华毓坤, 傅峰.导电胶合板的研究[J].林业科学, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012

    Hua Y K, Fu F. Studies on electrically conductive plywood[J]. Scientia Silvae Sinicae, 1995, 31(3):254-259. http://d.old.wanfangdata.com.cn/Periodical/jzclxb201102012
    [14]
    Yuan Q P, Fu F. Application of carbon fiber paper in integrated wooden electric heating composite[J]. Bioresources, 2014, 9(3): 5662-5675.
    [15]
    周兆兵, 朱兆龙, 薛宏, 等.内置式发热实木复合地板的电热性能[J].东北林业大学学报, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011

    Zhou Z B, Zhu Z L, Xue H, et al. Electrothermal performance of built-in heating parquet[J]. Journal of Northeast Forestry University, 2018, 46(2):53-58. doi: 10.3969/j.issn.1000-5382.2018.02.011
    [16]
    中华人民共和国住房和城乡建设部.低温辐射电热膜: JG/T 286—2010[S].北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Electric radiant heating film for low temperature: JG/T 286—2010[S]. Beijing: Standards Press of China, 2010.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.红外辐射加热器试验方法: GB/T 7287—2008[S].北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test method of infrared heater: GB/T 7287—2008[S]. Beijing: Standards Press of China, 2010.
    [18]
    陈瑞英, 谢拥群, 杨庆贤, 等.木材横纹导热系数的类比法研究[J].林业科学, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021

    Chen R Y, Xie Y Q, Yang Q X, et al. Study on wood thermal conductivity in transverse direction by analogism[J]. Scientia Silvae Sinicae, 2005, 41(1): 123-126. doi: 10.3321/j.issn:1001-7488.2005.01.021
    [19]
    姚武, 张超.碳纤维水泥基材料的电热效应[J].材料开发与应用, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005

    Yao W, Zhang C. Electro-thermal effect of carbon fiber reinforced cement composites[J]. Development and Application of Materials, 2007, 22(1):17-20. doi: 10.3969/j.issn.1003-1545.2007.01.005
    [20]
    Zhang H, Song X. Operating characteristic analysis on the ultra-thin low temperature floor-heating system[J]. Frontiers of Structural & Civil Engineering, 2013, 7(2):127-132.
    [21]
    施志钢, 张伟光, 刘龙.电热膜启动特性和局部聚热的实验研究[J].暖通空调, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023

    Shi Z G, Zhang W G, Liu L. Experimental study on startup characteristics and local heat accumulation of electric radiant heating film[J]. Heating Ventilating & Air Conditioning, 2018, 48(2):113-116, 101. http://d.old.wanfangdata.com.cn/Periodical/ntkt201802023
    [22]
    袁全平, 木质电热复合材料的电热响应机理及性能研究[D].北京: 中国林业科学研究院, 2015: 115-119.

    Yuan Q P. Performance and electric heating response mechanism of wooden electric heating composites.[D]. Beijing: Chinese Academy of Forestry, 2015: 115-119.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1609) PDF downloads (18) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return