• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Man Ziyuan, Hu Haiqing, Zhang Yunlin, Liu Fangce, Li Yuan. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49-57. DOI: 10.13332/j.1000-1522.20180326
Citation: Man Ziyuan, Hu Haiqing, Zhang Yunlin, Liu Fangce, Li Yuan. Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 49-57. DOI: 10.13332/j.1000-1522.20180326

Dynamic change and prediction model of moisture content of surface fuel in Maoer Mountain of northeastern China

More Information
  • Received Date: November 05, 2018
  • Revised Date: January 09, 2019
  • Available Online: March 27, 2019
  • Published Date: February 28, 2019
  • ObjectiveThe prediction of the fuel moisture content is the major part of forest fire research and the moisture content of surface fine fuel, semi-humus and humus determines the persistence of vertical fire and the probability of underground fire. The change of moisture content is mainly affected by weather conditions and topographical features, while there are few studies on the dynamic changes of moisture content of semi-humus and humus in China. Therefore, analyzing the dynamic changes of moisture content of these three layers of fuel has a guiding role in establishing China ’s forest fire forecasting system.
    MethodThe research conducted daily monitoring of surface fine fuel, semi-humus and humus moisture content under the typical coniferous and broadleaved mixed forest in Maoer Mountain of northeastern China, the meteorological data of forest were also monitored synchronously. This study also statistically analyzed the correlations between meteorological elements and the moisture content of three layers of fuel, and the meteorological element regression method was used to establish a moisture content prediction model for three layers of fuel.
    ResultDuring the whole monitor period, the moisture content of surface fine fuel fluctuated the most, with the minimum value of 10.99% and the maximum value was 253.30%. The semi-humus was the second, and the minimum value was 19.21% and the maximum value was 238.07%. The moisture content of humus was the most stable, and the minimum value was 48.45% and the maximum value was 193.83%. The change of moisture content of surface fuel was the most sensitive to the response of meteorological factors, mostly related to the meteorological factors on the current day or the previous day, followed by semi-humus, and the moisture content of humus was only related to air temperature. Three fuel types of regression prediction model for meteorological elements of moisture content were established. The average absolute error and the average relative error of the moisture content prediction model of surface fine fuel, semi-humus and humus were 22.2%, 23.5%, 17.1% and 7.1%, 14.8%, 23.4%, respectively. The prediction model of moisture content of fine fuel and semi-humus both can basically achieve the accuracy of forest fire prediction, while the accuracy of prediction model of moisture content of humus was bad.
    ConclusionThe three layers of fuel may have a forest fire during the fire prevention period. Attention should be paid to the prediction of underground fuels, including the moisture content of semi-humus and humus, in future forest fire prevention work.
  • [1]
    白尚斌, 张晓丽. 林火预测预报研究综述[J]. 森林防火, 2008(2):22−25. doi: 10.3969/j.issn.1002-2511.2008.02.011

    Bai S B, Zhang X L. Forest fire forecast research[J]. Forest Fire Prevention, 2008(2): 22−25. doi: 10.3969/j.issn.1002-2511.2008.02.011
    [2]
    舒立福, 田晓瑞, 寇晓军. 林火研究综述(I): 研究热点与进展[J]. 世界林业研究, 2003, 16(3):37−40. doi: 10.3969/j.issn.1001-4241.2003.03.008

    Shu L F, Tian X R, Kou X J. The focus and progress on forest fire research[J]. World Forestry Research, 2003, 16(3): 37−40. doi: 10.3969/j.issn.1001-4241.2003.03.008
    [3]
    王刚, 毕湘虹, 骆介禹, 等. 大兴安岭几种主要可燃物化学组成与燃烧性[J]. 森林防火, 1996(1):22−24.

    Wang G, Bi X H, Luo J Y, et al. The chemical composition and combustibility of typical fuels in Daxing’an Mountain[J]. Forest Fire Prevention, 1996(1): 22−24.
    [4]
    张运林, 张恒, 金森. 基于Logistic回归的烟头点燃红松松针概率研究[J]. 中南林业科技大学学报, 2015, 35(9):45−51.

    Zhang Y L, Zhang H, Jin S. Study on probability of Pinus koraiensis needles fire lighted by burning cigarette end based on Logistic regression[J]. Journal of Central South University of Forestry & Technology, 2015, 35(9): 45−51.
    [5]
    郑焕能, 居恩德. 林火管理[M]. 哈尔滨: 东北林业大学出版社, 1988: 15−18.

    Zheng H N, Ju E D. Forest fire management [M]. Harbin: Northeast Forestry University Press, 1988: 15−18.
    [6]
    周涧青. 大兴安岭南部主要森林类型可燃物负荷量及其潜在地表火行为研究[D]. 北京: 北京林业大学, 2014.

    Zhou J Q. Research on forest fuel loadings and potential surface fire behavior of major forest types in southern Daxing ’an Mountains[D]. Beijing: Beijing Forestry University, 2014.
    [7]
    牛树奎, 王叁, 贺庆棠, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物垂直连续性与树冠火发生[J]. 北京林业大学学报, 2012, 34(3):1−7.

    Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
    [8]
    吴志伟, 贺红士, 梁宇, 等. 丰林自然保护区森林可燃物模型的建立[J]. 应用生态学报, 2012, 23(6):1503−1510.

    Wu Z W, He H S, Liang Y, et al. Establishment of standard forest fuel models for Fenglin Natural Reserve, Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1503−1510.
    [9]
    王舜娆, 金森. 基于热重分析的南昌地区8种可燃物的热解动力学及燃烧性排序[J]. 中南林业科技大学学报, 2015, 35(11):94−98.

    Wang S R, Jin S. Study on pyrolysis kinetics and combustibility ordering of 8 kinds of fuels in Nanchang area based on Thermogravimetric analysis[J]. Journal of Central South University of Forestry & Technology, 2015, 35(11): 94−98.
    [10]
    高国平, 王忠友. 森林可燃物研究综述[J]. 辽宁林业科技, 1998(4):34−37.

    Gao G P, Wang Z Y. Study on forest fuel[J]. Journal of Liaoning Forestry Science & Technology, 1998(4): 34−37.
    [11]
    刘曦, 金森. 湿度对可燃物时滞和平衡含水率的影响[J]. 东北林业大学学报, 2007, 35(5):44−46. doi: 10.3969/j.issn.1000-5382.2007.05.014

    Liu X, Jin S. Effect of humidity on timelag and equilibrium moisture content of forest fuels[J]. Journal of Northeast Forestry University, 2007, 35(5): 44−46. doi: 10.3969/j.issn.1000-5382.2007.05.014
    [12]
    Byram G M, Jemison G M. Solar radiation and forest fuel moisture[J]. Journal of Agricultural Research, 1943, 67(4): 149−176.
    [13]
    Catchpole E A, Catchpole W R, Viney N R, et al. Estimating fuel response time and predicting fuel moisture content from field data[J]. International Journal of Wildland Fire, 2001, 10(2): 215−222. doi: 10.1071/WF01011
    [14]
    Toomey M, Vierling L A. Multispectral remote sensing of landscape level foliar moisture: techn[J]. Revue Canadienne De Recherche Forestière, 2005, 35(5): 1087−1097. doi: 10.1139/x05-043
    [15]
    张恒, 金森, 邸雪颖. 基于FWI湿度码的塔河林业局地表凋落物含水率预测[J]. 应用生态学报, 2014, 25(7):2049−2055.

    Zhang H, Jin S, Di X Y. Prediction of litter moisture content in Tahe Forestry Bureau of Northeast China based on FWI moisture codes[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2049−2055.
    [16]
    刘昕, 邸雪颖. 三种方法对森林地表可燃物含水率的预测评价[J]. 森林工程, 2013, 29(2):8−13. doi: 10.3969/j.issn.1001-005X.2013.02.002

    Liu X, Di X Y. Evaluation of three prediction methods on forest surface fuel moisture[J]. Forest Engineering, 2013, 29(2): 8−13. doi: 10.3969/j.issn.1001-005X.2013.02.002
    [17]
    高开通, 刘鹏举, 唐小明. 森林资源小班火险天气等级预报方法研究[J]. 北京林业大学学报, 2013, 35(4):61−66.

    Gao K T, Liu P J, Tang X M. Forecasting forest fire risk grade of forest subcompartment[J]. Journal of Beijing Forestry University, 2013, 35(4): 61−66.
    [18]
    宋雨, 胡海清, 孙龙, 等. 大兴安岭不同坡位地表可燃物含水率的动态变化与建模[J]. 森林工程, 2017, 33(5):1−7.

    Song Y, Hu H Q, Sun L, et al. Dynamic change and modeling of moisture content of surface fuel in different slope positions of Daxing’anling[J]. Forest Engineering, 2017, 33(5): 1−7.
    [19]
    李海洋, 胡海清, 孙龙. 我国森林死可燃物含水率与气象和土壤因子关系模型研究[J]. 森林工程, 2016, 32(3):1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001

    Li H Y, Hu H Q, Sun L. Research on relational models of moisture content of dead forest fuel with meteorological factors and soil factors in China[J]. Forest Engineering, 2016, 32(3): 1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001
    [20]
    Simard A. The moisture content of forest fuels-I: a review of the basis concepts[R]. Ottawa: CDFRD Forest Fire Research Institute Information Report FF-X-14, 1968.
    [21]
    Nelson R M J. Prediction of diurnal change in 10-h fuel stick moisture content[J]. Canadian Journal of Forest Research, 2000, 30(7): 1071−1087. doi: 10.1139/x00-032
    [22]
    者香. 泥炭粒径、含水率和无机物含量对阴燃蔓延速率影响的实验研究[D]. 合肥: 中国科学技术大学, 2015.

    Zhe X. Expermental study on the influence of particle size, moisture content on the spreading rate of peat smoldering[D]. Hefei: University of Science and Technology of China, 2015.
    [23]
    Chuvieco E, Cocero D, David Riaño, et al. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating[J]. Remote Sensing of Environment, 2004, 92(3): 322−331. doi: 10.1016/j.rse.2004.01.019
    [24]
    Bowyer P, Danson F M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level[J]. Remote Sensing of Environment, 2004, 92(3): 297−308. doi: 10.1016/j.rse.2004.05.020
    [25]
    Matthews S. Effect of drying temperature on fuel moisture content measurements[J]. International Journal of Wildland Fire, 2010, 19(6): 800. doi: 10.1071/WF08188
    [26]
    Kreye J K, Kobziar L N, Zipperer W C. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels[J]. International Journal of Wildland Fire, 2013, 22(4): 440−445. doi: 10.1071/WF12147
    [27]
    胡海清, 牛树奎, 金森, 等. 林火生态与管理[M]. 北京: 中国林业出版社, 2005: 31−37.

    Hu H Q, Niu S K, Jin S, et al. Fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005: 31−37.
    [28]
    张运林, 孙萍, 胡海清, 等. 风速对不同结构红松针叶床层失水系数影响的室内模拟研究[J]. 中南林业科技大学学报, 2018, 38(3):57−64.

    Zhang Y L, Sun P, Hu H Q, et al. Laboratory study of the effects of wind speed on drying coefficient of fuelbeds composed of Korean pine needles with varied structure[J]. Journal of Central South University of Forestry & Technology, 2018, 38(3): 57−64.
    [29]
    张运林, 孙萍, 胡海清, 等. 风速对蒙古栎阔叶床层两个重要失水时间的影响[J]. 中南林业科技大学学报, 2018, 38(4):65−71.

    Zhang Y L, Sun P, Hu H Q, et al. Effects of wind speed on two key drying times of fuelbeds composed of Mongolian oak leaves[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 65−71.
    [30]
    周勇. 昆明典型可燃物含水率预测模型研究[D]. 哈尔滨: 东北林业大学, 2014.

    Zhou Y. Study on fuel moisture content prediction of fuels in typical stands, Kunming[D]. Harbin: Northeast Forestry University, 2014.
    [31]
    张恒. 大兴安岭地表死可燃物含水率预测的影响因素[D]. 哈尔滨: 东北林业大学, 2014.

    Zhang H. Influencing factors of dead surface fuel moisture prediction in Great Xing ’an region [D]. Harbin: Northeast Forestry University, 2014.
    [32]
    金森, 陈鹏宇. 樟子松针叶床层结构对失水过程中含水率参数的影响[J]. 林业科学, 2011, 47(4):114−120.

    Jin S, Chen P Y. Effects of structure features of fuelbed composed of scots pine needles on equilibrium moisture content parameters during desorption process[J]. Scientia Silvae Sinicae, 2011, 47(4): 114−120.
    [33]
    马壮, 李亮, 金森. 直接估计法在帽儿山林场白桦林可燃物含水率的适用性分析[J]. 中南林业科技大学学报, 2016, 36(11):54−58.

    Ma Z, Li L, Jin S. Applicability analysis method in water Mao’ershan Birch forest fuel rate estimated directly[J]. Journal of Central South University of Forestry & Technology, 2016, 36(11): 54−58.
    [34]
    于宏洲, 金森, 邸雪颖. 以时为步长的塔河林业局白桦林地表死可燃物含水率预测方法[J]. 林业科学, 2013, 49(12):108−113.

    Yu H Z, Jin S, Di X Y. Models for predicting the hourly fuel moisture content on the forest floor of Birch stands in Tahe Forestry Bureau[J]. Scientia Silvae Sinicae, 2013, 49(12): 108−113.
    [35]
    Anderson H E. Moisture diffusivity and response time in fine forest fuels[J]. Canadian Journal of Forest Research, 1990, 20(3): 315−325. doi: 10.1139/x90-046
    [36]
    Jolly W M, Hadlow A M. A comparison of two methods for estimating conifer live foliar moisture content[J]. International Journal of Wildland Fire, 2011, 21(2): 180−185.
  • Related Articles

    [1]Shao Chenxi, Liang Yingmei, Lao Wenhao, Li Yunfan. Histological and physiopathology characteristics in the interaction of Gymnosporangium yamadae and Malus domestica leaves[J]. Journal of Beijing Forestry University, 2024, 46(11): 34-42. DOI: 10.12171/j.1000-1522.20230298
    [2]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [3]LI Yan, MENG Qing-fan, ZONG Xiang, GAO Wen-tao. Ultrastructural observations on antennal sensilla of Massicus raddei Blessig ( Coleoptera: Cerambycidae ).[J]. Journal of Beijing Forestry University, 2013, 35(6): 80-86.
    [4]TAN Qiong, WEN Jun-bao, LI Zhen-yu. Comparison among the ultrastructures and characteristics of wing scales in 5 species of pine caterpillar moths[J]. Journal of Beijing Forestry University, 2012, 34(4): 99-106.
    [5]MA Ni, SUN Zhen-yuan, LIU Qing-hua, HAN Lei, JU Guan-sheng, QIAN Yong-qiang, LIU Jun-xiang. Seasonal variation of leaf anatomical structure of Euonymus japonicus ‘Cu Zhi’[J]. Journal of Beijing Forestry University, 2011, 33(6): 112-118.
    [6]CHEN Feng-mao, YE Jian-ren, WU Xiao-qin, TAN Jia-jin, HUANG Lin. Two kinds of applied molecular skills to detect Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2011, 33(4): 149-152.
    [7]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [8]DI Xiu-ru, XU Zhi-gang. Effects of carbon sources and light density on the growth and chloroplast ultrastructure of Pelargonium odoratissmum in vitro[J]. Journal of Beijing Forestry University, 2008, 30(3): 128-131.
    [9]JIN Hui, XU Zhong-xiang, CHEN Hui, HAN Su-fen. Localization and changes of activity of acid phosphatase in mycorhiza of Cymbidium hookerianum[J]. Journal of Beijing Forestry University, 2007, 29(4): 156-160. DOI: 10.13332/j.1000-1522.2007.04.031
    [10]ZHANG Can, ZHANG Lu-ping. Ultrastructural observation on esophageal glands and their secretory granules in Bursaphelenchus xylophilus and Bursaphelenchus mucronatus by TEM[J]. Journal of Beijing Forestry University, 2006, 28(3): 119-122.
  • Cited by

    Periodical cited type(1)

    1. 李恩杰,李娜,王青华,张永安,王玉珠,曲良建. 伊氏杀线真菌与苏云金芽孢杆菌对松材线虫的联合毒力研究. 林业科学研究. 2019(01): 106-111 .

    Other cited types(3)

Catalog

    Article views (1952) PDF downloads (70) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return