• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371
Citation: Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371

Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances

More Information
  • Received Date: November 08, 2018
  • Revised Date: February 24, 2019
  • Available Online: April 29, 2019
  • Published Date: March 31, 2019
  • ObjectiveThere are abundant genetic variations of the Pinus yunnanensis among geographical provenances. However, genetic variation in biomass allocation and allometric relationships among biomass components were rarely addressed in this tree. Biomass allocation and allometry of P. yunnanensis seedlings from different provenances were studied to understand genetic variations in biomass allocation among provenances of P. yunnanensis seedlings.
    MethodP. yunnanensis seedlings in containers from nine geographical provenances were designed by single-factor randomized block and then were selected to compare their biomass allocation and allometric relationships, and the correlations between geo-climatic parameters and biomass allocation were analyzed. Allometric relationships among seedling components were analyzed using standardized major axis regression.
    ResultThere were significant differences in biomass and its allocation among provenances. The highest biomass of stem, leaf, total biomass and the lowest root biomass appeared in Yongren provenance, while Yunlong provenance, Yunnan Province of Southwestern China had the lower total biomass but the highest leaf biomass ratio. Biomass allocation was influenced variously by geographical and climatic factors, of which main influencing factors were altitude and mean annual temperature. The allometric scaling exponents among biomass components varied significantly in different provenances, the similar phenomenon occurred between each organ and plant size.
    ConclusionDespite the same species, there are no collaborative change characteristics in both organs ’ growth rates and biomass partition among provenances of P. yunnanensis, reflecting the genetic variation in the biomass distribution pattern of P. yunnanensis seedlings due to the long-term influence of geographical and climatic factors in each provenance.
  • [1]
    Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environment control[J]. New Phytologist, 2012, 193(1): 30−50. doi: 10.1111/j.1469-8137.2011.03952.x
    [2]
    谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015, 34(3):648−655.

    Xie R, Tao Y, Chang S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J]. Chinese Journal of Ecology, 2015, 34(3): 648−655.
    [3]
    Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Australian Journal of Plant Physiology, 2000, 27(6): 595−607.
    [4]
    Pike C C, Warren J C, Montgomery R A. Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss[J]. New Forests, 2016, 47(1): 131−141. doi: 10.1007/s11056-015-9498-0
    [5]
    Chmura D J, Guzicka M, Rożkowski R, et al. Allometry varies among related families of Norway spruce[J/OL]. Annals of Forest Science, 2017, 74(2): 36 [2018−10−09]. http://doi.org/10.1007/s13595-017-0631-4.
    [6]
    Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360
    [7]
    Vasseur F, Violle C, Enquist B J, et al. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry[J]. Ecology Letters, 2012, 15(10): 1149−1157. doi: 10.1111/j.1461-0248.2012.01839.x
    [8]
    陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23(2):38−48.

    Tao Y, Zhang Y M. Biomass allocation patterns allometric relationships of six ephemeroid species in Junggar Basin, China[J]. Acta Pratacul Turae Sinica, 2014, 23(2): 38−48.
    [9]
    Aranda I, Alia R, Ortega U, et al. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations[J]. Tree Genetics & Genomes, 2010, 6(2): 169−178.
    [10]
    Sanchez-Gomez D, Majada J, Alia R, et al. Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation?[J/OL] Annals of Forest Science, 2010, 67(5): 505 [2018−10−09]. http://doi.org/10.1051/forest/20100.
    [11]
    Cheng D, Ma Y, Zhong Q, et al. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings[J]. Ecology and Evolution, 2014, 4(20): 3968−3977. doi: 10.1002/ece3.2014.4.issue-20
    [12]
    Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2922−2927. doi: 10.1073/pnas.041590298
    [13]
    韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025

    Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws[J]. Journal of Plant Ecology, 2008, 32(4): 951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025
    [14]
    Poorter H, Jagodzinski A M, Ruiz-Peinado R, et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytologist, 2015, 208(3): 736−749. doi: 10.1111/nph.13571
    [15]
    Chmura D J, Guzicka M, Rożkowski R, et al. Variation in aboveground and belowground biomass in progeny of selected stands of Pinus sylvestris[J]. Scandinavian Journal of Forest Research, 2013, 28(8): 724−734. doi: 10.1080/02827581.2013.844269
    [16]
    Aspinwall M J, King J S, Mckeand S E. Productivity differences among loblolly pine genotypes are independent of individual-tree biomass partitioning and growth efficiency[J]. Trees, 2013, 27(3): 533−545. doi: 10.1007/s00468-012-0806-4
    [17]
    Stovall J P, Fox T R, Seiler J R. Short-term changes in biomass partitioning of two full-sib clones of Pinus taeda L. under differing fertilizer regimes over 4 months[J]. Trees, 2012, 26(3): 951−961. doi: 10.1007/s00468-011-0673-4
    [18]
    Stovall J P, Fox T R, Seiler J R. Allometry varies among 6-year-old Pinus taeda (L.) clones in the Virginia Piedmont[J]. Forest Science, 2013, 59(1): 50−62. doi: 10.5849/forsci.10-095
    [19]
    金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社, 2004.

    Jin Z Z, Peng J. Pinus yunnanensis[M]. Kunming: Yunnan Science and Technology Press, 2004.
    [20]
    许玉兰, 蔡年辉, 陈诗, 等. 云南松天然群体遗传变异与生态因子的相关性[J]. 生态学杂志, 2016, 35(7):1767−1775.

    Xu Y L, Cai N H, Chen S, et al. Relationships between the genetic diversity of Pinus yunnanensis Franch. natural populations and ecological factors[J]. Chinese Journal of Ecology, 2016, 35(7): 1767−1775.
    [21]
    陈强, 董福美, 常恩福. 云南松母树林后代苗期生长变异的初步研究[J]. 云南林业科技, 1996(4):15−23.

    Chen Q, Dong F M, Chang E F. A preliminary study on seedling stage growth variation of subsequent generation of seed stand of Pinus yunnanensis[J]. Yunnan Forestry Science and Technology, 1996(4): 15−23.
    [22]
    舒筱武, 郑畹, 冯弦. 云南松种源、林分和家系苗高生长的遗传变异研究[J]. 云南林业科技, 1998(2):2−6, 9-10.

    Shu X W, Zheng W, Feng X. Study on seedling height growth hereditary variation of Pinus yunnanensis provenance, stand and family[J]. Yunnan Forestry Science and Technology, 1998(2): 2−6, 9-10.
    [23]
    刘代亿, 李跟前, 李连芳, 等. 云南松优良家系及优良个体苗期选择研究[J]. 西北林学院学报, 2009, 24(4):67−72.

    Liu D Y, Li G Q, Li L F, et al. Seedling selection of superior families and excellent-individuals selection of Pinus yunnanensis[J]. Journal of Northwest Forestry University, 2009, 24(4): 67−72.
    [24]
    吕学辉, 魏巍, 陈诗, 等. 云南松优良家系超级苗选择研究[J]. 云南大学学报(自然科学版), 2012, 34(1):113−119.

    Lü X H, Wei W, Chen S, et al. Study on seedling selection of superior families of Pinus yunnanensis Franch[J]. Journal of Yunnan University(Natural Sciences Edition), 2012, 34(1): 113−119.
    [25]
    Gould S J. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966, 41(4): 587−640. doi: 10.1111/brv.1966.41.issue-4
    [26]
    Warton D I, Weber N C. Common slope tests for bivariate errors in variables models[J]. Biometrical Journal, 2002, 44(2): 161−174. doi: 10.1002/(ISSN)1521-4036
    [27]
    Falster D S, Warton D I, Wright I J. User ’s guide to SMATR: standardised major axis tests & routines (Version 2.0)[J/OL]. 2006[2018−10−09]. http://www.bio.mq.edu.au/ecology/SMATR/.
    [28]
    虞泓, 葛颂, 黄瑞复, 等. 云南松及其近缘种的遗传变异与亲缘关系[J]. 植物学报, 2000, 42(1):107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018

    Yu H, Ge S, Huang R F, et al. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species[J]. Acta Botani Sinica, 2000, 42(1): 107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018
    [29]
    刘志龙, 虞木奎, 唐罗忠, 等. 不同地理种源麻栎苗期变异和初步选择[J]. 林业科学研究, 2009, 22(4):486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005

    Liu Z L, Yu M K, Tang L Z, et al. Provenance variation and preliminary selection of Quercus acutissima seedlings[J]. Forest Research, 2009, 22(4): 486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005
    [30]
    Lin L, Luo J. Variation in traits of Picea likiangensis var. linzhiensis seedlings from different provenances[J]. Forest Research, 2014, 27(4): 557−561.
    [31]
    Wang B S, Mao J F, Zhao W, et al. Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis[J/OL]. PLoS One, 2013, 8(6): e67345[2018−10−09]. https://doi.org/10.1371/journal.pone.0067345.
    [32]
    尹擎, 罗方书, 皮文林, 等. 云南松地理种源的研究[J]. 广西植物, 1995, 15(1):52−56.

    Yin Q, Luo F S, Pi W L, et al. Studies on the geographical provenance of Pinus yunnanensis[J]. Guihaia, 1995, 15(1): 52−56.
    [33]
    Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
    [34]
    Wright S D, McConnaughay K D M. Interpreting phenotypic plasticity: the importance of ontogeny[J]. Plant Species Biology, 2002, 17(2-3): 119−131. doi: 10.1046/j.1442-1984.2002.00082.x
    [35]
    Niklas K J. Plant allometry: is there a grand unifying theory?[J]. Biological Reviews, 2004, 79(4): 871−889. doi: 10.1017/S1464793104006499
    [36]
    Niklas K J. Modelling below-and above-ground biomass for nonwoody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [3]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [4]Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055
    [5]Wang Shanshan, Bi Huaxing, Cui Yanhong, Yun Huiya, Ma Xiaozhi, Zhao Danyang, Hou Guirong. Key indexes and characteristics of soil anti-erodibility of Robinia pseudoacacia with different densities in loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 94-104. DOI: 10.12171/j.1000-1522.20200226
    [6]Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. DOI: 10.12171/j.1000-1522.20200149
    [7]Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. DOI: 10.12171/j.1000-1522.20190263
    [8]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [9]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
    [10]REN Xiao-xu, CAI Ti-jiu, WANG Xiao-feng. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151-154.
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (4139) PDF downloads (76) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return