Citation: | Li Xin, Li Kun, Duan Anan, Cui Kai, Gao Chengjie. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41-50. DOI: 10.13332/j.1000-1522.20180371 |
[1] |
Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environment control[J]. New Phytologist, 2012, 193(1): 30−50. doi: 10.1111/j.1469-8137.2011.03952.x
|
[2] |
谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015, 34(3):648−655.
Xie R, Tao Y, Chang S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J]. Chinese Journal of Ecology, 2015, 34(3): 648−655.
|
[3] |
Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Australian Journal of Plant Physiology, 2000, 27(6): 595−607.
|
[4] |
Pike C C, Warren J C, Montgomery R A. Allometry of early growth in selected and wild sources of white spruce, Picea glauca (Moench) Voss[J]. New Forests, 2016, 47(1): 131−141. doi: 10.1007/s11056-015-9498-0
|
[5] |
Chmura D J, Guzicka M, Rożkowski R, et al. Allometry varies among related families of Norway spruce[J/OL]. Annals of Forest Science, 2017, 74(2): 36 [2018−10−09]. http://doi.org/10.1007/s13595-017-0631-4.
|
[6] |
Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360
|
[7] |
Vasseur F, Violle C, Enquist B J, et al. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry[J]. Ecology Letters, 2012, 15(10): 1149−1157. doi: 10.1111/j.1461-0248.2012.01839.x
|
[8] |
陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23(2):38−48.
Tao Y, Zhang Y M. Biomass allocation patterns allometric relationships of six ephemeroid species in Junggar Basin, China[J]. Acta Pratacul Turae Sinica, 2014, 23(2): 38−48.
|
[9] |
Aranda I, Alia R, Ortega U, et al. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations[J]. Tree Genetics & Genomes, 2010, 6(2): 169−178.
|
[10] |
Sanchez-Gomez D, Majada J, Alia R, et al. Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation?[J/OL] Annals of Forest Science, 2010, 67(5): 505 [2018−10−09]. http://doi.org/10.1051/forest/20100.
|
[11] |
Cheng D, Ma Y, Zhong Q, et al. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings[J]. Ecology and Evolution, 2014, 4(20): 3968−3977. doi: 10.1002/ece3.2014.4.issue-20
|
[12] |
Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(5): 2922−2927. doi: 10.1073/pnas.041590298
|
[13] |
韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025
Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws[J]. Journal of Plant Ecology, 2008, 32(4): 951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025
|
[14] |
Poorter H, Jagodzinski A M, Ruiz-Peinado R, et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytologist, 2015, 208(3): 736−749. doi: 10.1111/nph.13571
|
[15] |
Chmura D J, Guzicka M, Rożkowski R, et al. Variation in aboveground and belowground biomass in progeny of selected stands of Pinus sylvestris[J]. Scandinavian Journal of Forest Research, 2013, 28(8): 724−734. doi: 10.1080/02827581.2013.844269
|
[16] |
Aspinwall M J, King J S, Mckeand S E. Productivity differences among loblolly pine genotypes are independent of individual-tree biomass partitioning and growth efficiency[J]. Trees, 2013, 27(3): 533−545. doi: 10.1007/s00468-012-0806-4
|
[17] |
Stovall J P, Fox T R, Seiler J R. Short-term changes in biomass partitioning of two full-sib clones of Pinus taeda L. under differing fertilizer regimes over 4 months[J]. Trees, 2012, 26(3): 951−961. doi: 10.1007/s00468-011-0673-4
|
[18] |
Stovall J P, Fox T R, Seiler J R. Allometry varies among 6-year-old Pinus taeda (L.) clones in the Virginia Piedmont[J]. Forest Science, 2013, 59(1): 50−62. doi: 10.5849/forsci.10-095
|
[19] |
金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社, 2004.
Jin Z Z, Peng J. Pinus yunnanensis[M]. Kunming: Yunnan Science and Technology Press, 2004.
|
[20] |
许玉兰, 蔡年辉, 陈诗, 等. 云南松天然群体遗传变异与生态因子的相关性[J]. 生态学杂志, 2016, 35(7):1767−1775.
Xu Y L, Cai N H, Chen S, et al. Relationships between the genetic diversity of Pinus yunnanensis Franch. natural populations and ecological factors[J]. Chinese Journal of Ecology, 2016, 35(7): 1767−1775.
|
[21] |
陈强, 董福美, 常恩福. 云南松母树林后代苗期生长变异的初步研究[J]. 云南林业科技, 1996(4):15−23.
Chen Q, Dong F M, Chang E F. A preliminary study on seedling stage growth variation of subsequent generation of seed stand of Pinus yunnanensis[J]. Yunnan Forestry Science and Technology, 1996(4): 15−23.
|
[22] |
舒筱武, 郑畹, 冯弦. 云南松种源、林分和家系苗高生长的遗传变异研究[J]. 云南林业科技, 1998(2):2−6, 9-10.
Shu X W, Zheng W, Feng X. Study on seedling height growth hereditary variation of Pinus yunnanensis provenance, stand and family[J]. Yunnan Forestry Science and Technology, 1998(2): 2−6, 9-10.
|
[23] |
刘代亿, 李跟前, 李连芳, 等. 云南松优良家系及优良个体苗期选择研究[J]. 西北林学院学报, 2009, 24(4):67−72.
Liu D Y, Li G Q, Li L F, et al. Seedling selection of superior families and excellent-individuals selection of Pinus yunnanensis[J]. Journal of Northwest Forestry University, 2009, 24(4): 67−72.
|
[24] |
吕学辉, 魏巍, 陈诗, 等. 云南松优良家系超级苗选择研究[J]. 云南大学学报(自然科学版), 2012, 34(1):113−119.
Lü X H, Wei W, Chen S, et al. Study on seedling selection of superior families of Pinus yunnanensis Franch[J]. Journal of Yunnan University(Natural Sciences Edition), 2012, 34(1): 113−119.
|
[25] |
Gould S J. Allometry and size in ontogeny and phylogeny[J]. Biological Reviews, 1966, 41(4): 587−640. doi: 10.1111/brv.1966.41.issue-4
|
[26] |
Warton D I, Weber N C. Common slope tests for bivariate errors in variables models[J]. Biometrical Journal, 2002, 44(2): 161−174. doi: 10.1002/(ISSN)1521-4036
|
[27] |
Falster D S, Warton D I, Wright I J. User ’s guide to SMATR: standardised major axis tests & routines (Version 2.0)[J/OL]. 2006[2018−10−09]. http://www.bio.mq.edu.au/ecology/SMATR/.
|
[28] |
虞泓, 葛颂, 黄瑞复, 等. 云南松及其近缘种的遗传变异与亲缘关系[J]. 植物学报, 2000, 42(1):107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018
Yu H, Ge S, Huang R F, et al. A preliminary study on genetic variation and relationships of Pinus yunnanensis and its closely related species[J]. Acta Botani Sinica, 2000, 42(1): 107−110. doi: 10.3321/j.issn:1672-9072.2000.01.018
|
[29] |
刘志龙, 虞木奎, 唐罗忠, 等. 不同地理种源麻栎苗期变异和初步选择[J]. 林业科学研究, 2009, 22(4):486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005
Liu Z L, Yu M K, Tang L Z, et al. Provenance variation and preliminary selection of Quercus acutissima seedlings[J]. Forest Research, 2009, 22(4): 486−492. doi: 10.3321/j.issn:1001-1498.2009.04.005
|
[30] |
Lin L, Luo J. Variation in traits of Picea likiangensis var. linzhiensis seedlings from different provenances[J]. Forest Research, 2014, 27(4): 557−561.
|
[31] |
Wang B S, Mao J F, Zhao W, et al. Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnanensis[J/OL]. PLoS One, 2013, 8(6): e67345[2018−10−09]. https://doi.org/10.1371/journal.pone.0067345.
|
[32] |
尹擎, 罗方书, 皮文林, 等. 云南松地理种源的研究[J]. 广西植物, 1995, 15(1):52−56.
Yin Q, Luo F S, Pi W L, et al. Studies on the geographical provenance of Pinus yunnanensis[J]. Guihaia, 1995, 15(1): 52−56.
|
[33] |
Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
|
[34] |
Wright S D, McConnaughay K D M. Interpreting phenotypic plasticity: the importance of ontogeny[J]. Plant Species Biology, 2002, 17(2-3): 119−131. doi: 10.1046/j.1442-1984.2002.00082.x
|
[35] |
Niklas K J. Plant allometry: is there a grand unifying theory?[J]. Biological Reviews, 2004, 79(4): 871−889. doi: 10.1017/S1464793104006499
|
[36] |
Niklas K J. Modelling below-and above-ground biomass for nonwoody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028
|
[1] | Wang Xin, Liu Xinyue, Mu Yanmei, Liu Peng, Jia Xin. Changes in vegetation phenology and its responses to climatic factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2023, 45(7): 61-75. DOI: 10.12171/j.1000-1522.20220443 |
[2] | Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367 |
[3] | Zhang Jingru, Tong Xiaojuan, Meng Ping, Zhang Jinsong, Liu Peirong. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17-26. DOI: 10.12171/j.1000-1522.20200113 |
[4] | Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295 |
[5] | Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020 |
[6] | YANG Shu-ping, ZHANG De-shun, LI Yue-zhong, JU Rui-ting, LIU Ming. Evaluation system for the resistance of landscape tree to diseases and pests and its application in Shanghai under climate warming[J]. Journal of Beijing Forestry University, 2017, 39(8): 87-97. DOI: 10.13332/j.1000-1522.20160346 |
[7] | CHEN Jing-ru, DU Yan-jun, ZHANG Yu-hong, PAN Jie, CHEN Fei-fei, DAI Wu-jun, LIU Tong, ZHOU Zhi-qiang. Peak flowering responses to the global warming of woody species in Heilongjiang Province,northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 50-56. DOI: 10.13332/j.1000-1522.20160186 |
[8] | WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91. |
[9] | SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80. |
[10] | SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33. |
1. |
杨博文,刘凤莲,陈洪敏. 三江并流区森林植被时空演变及驱动因素. 森林工程. 2025(01): 108-125 .
![]() |