• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Luan Jiayu, An Linjun, Ren Li, Li Huiyu. Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(8): 57-66. DOI: 10.13332/j.1000-1522.20180430
Citation: Luan Jiayu, An Linjun, Ren Li, Li Huiyu. Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(8): 57-66. DOI: 10.13332/j.1000-1522.20180430

Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla

More Information
  • Received Date: December 24, 2018
  • Revised Date: April 15, 2019
  • Available Online: July 02, 2019
  • Published Date: July 31, 2019
  • ObjectiveThe BpTCP2 gene was cloned, sequence characteristics were analyzed, and the gene expression characteristics of the gene under different tissues, hormone treatments and abiotic stress were detected, which provided a reference for revealing the function of BpTCP2 in plant growth and development and stress response.
    MethodThe full-length cDNA sequence of BpTCP2 gene was cloned by PCR technology and its cDNA sequence characteristics were analyzed by bioinformatics. Real-time quantitative PCR was used to analyze expression level of the gene in different tissues and the responses of exogenous phytohormones (ABA, IAA, BR, JA, SA) and abiotic stress (CdCl2, NaCl, NaHCO3, PEG).
    ResultThe full-length cDNA sequence of BpTCP2 gene was successfully cloned. Bioinformatics analysis found that BpTCP2 contained a highly conserved bHLH domain and BpTCP2 belongs to TCP-P subclass; qRT-PCR analysis showed that the expression of BpTCP2 gene was higher in xylem, young leaves and stem segments. Under the treatment of CdCl2, NaCl and NaHCO3, the gene was up-regulated. Five exogenous phytohormones could induce the expression of the gene.
    ConclusionThe BpTCP2 gene was involved in the development of stems of Betula platyphylla, and affects the development of leaves and early stem segments and responds to various hormones and heavy metals, salts and alkalis.
  • [1]
    Ma J, Liu F, Wang Q, et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypiumarboreum) fiber early development[J/OL]. Scientific Reports, 2016, 6(1): 21535 [2018−11−30]. https://doi.org/10.1038/srep21535.
    [2]
    冯雅岚, 熊瑛, 张均, 等. TCP转录因子在植物发育和生物胁迫响应中的作用[J]. 植物生理学报, 2018, 54(5):22−30.

    Feng Y L, Xiong Y, Zhang J, et al. The role of TCP transcription factors inplant development and biotic stress response[J]. Chinese Journal of Plant Physiology, 2018, 54(5): 22−30.
    [3]
    Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 83: 794−799.
    [4]
    Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4): 367−376. doi: 10.1016/S0092-8674(00)81523-8
    [5]
    Nath U. Genetic control of surface curvature[J]. Science, 2003, 299: 1404−1407. doi: 10.1126/science.1079354
    [6]
    Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425: 257−263. doi: 10.1038/nature01958
    [7]
    Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6): 787−791. doi: 10.1038/ng2036
    [8]
    Schommer C, Palatnik J F, Aggarwal P, et al. Control of Jasmonate Biosynthesis and Senescence by miR319 Targets[J/OL]. PLoS Biology, 2008, 6(9): e230 [2018−11−30]. https://doi.org/10.1371/journal.pbio.0060230.
    [9]
    Mao C, Lu S, Lü B, et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology, 2017, 174(3): 1747−1763. doi: 10.1104/pp.17.00542
    [10]
    Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1): 42−52. doi: 10.1111/tpj.2008.53.issue-1
    [11]
    安家兴. 拟南芥TCP11调控维管束的发育[D]. 兰州: 兰州大学, 2012.

    An J X. Arabidopsis thaliana TCP11 regulates the development of vascular bundles[D]. Lanzhou: Lanzhou University, 2012.
    [12]
    Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plantgrowth and development[J]. The Plant Journal, 1999, 18(2): 215−222. doi: 10.1046/j.1365-313X.1999.00444.x
    [13]
    Herve C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3): 1462−1477. doi: 10.1104/pp.108.126136
    [14]
    周瑜. TCP转录因子通过促进PIFs活性和生长素合成基因的表达调控避荫反应[D]. 兰州: 兰州大学, 2018.

    Zhou Y. TCP transcription factors regulate shade avoidance via promoting the activity of PIFs and the expression of auxin biosynthetic genes[D]. Lanzhou: Lanzhou University, 2018.
    [15]
    Ubertimanasero N G, Lucero L E, Viola I L, et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins[J]. Journal of Experimental Botany, 2012, 63(2): 809−823. doi: 10.1093/jxb/err305
    [16]
    Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulatethe activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. Plant Cell, 2010, 22(11): 3574−3588. doi: 10.1105/tpc.110.075598
    [17]
    Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiology, 2012, 159(4): 1511−1523. doi: 10.1104/pp.112.200303
    [18]
    刘伟娜, 韩建民, 董金皋, 等. 棉花TCP家族转录因子基因GhTCP1的克隆与表达分析[J]. 棉花学报, 2010, 22(5):409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005

    Liu W N, Han J M, Dong J G, et al. Cloning and expression analysis of cotton TCP family transcription factor gene GhTCP1[J]. Journal of Cotton, 2010, 22(5): 409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005
    [19]
    Steiner E, Efroni I, Gopalraj M, et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers[J]. Plant Cell, 2012, 24(1): 96−108. doi: 10.1105/tpc.111.093518
    [20]
    Daviere J M, Wild M, Regnaul T, et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Current Biology, 2014, 24(16): 1923−1928. doi: 10.1016/j.cub.2014.07.012
    [21]
    宁坤, 杨洋, 马述山, 等. 11条白桦BpSPL家族基因的生物信息学和表达分析[J]. 林业科学研究, 2016, 29(5):646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004

    Ning K, Yang Y, Ma S S, et al. Bioinformatics and expression analysis of 11 BpSPL family genes in Betula platyphylla[J]. Forest Research, 2016, 29(5): 646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004
    [22]
    董京祥, 任丽, 张园, 等. 白桦BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学报, 2018, 42(4):113−118.

    Dong J X, Ren L, Zhang Y, et al. Analysis of temporal and spatial expression of BpTCPs gene family bioinformatics in Betula platensis[J]. Journal of Nanjing Forestry University, 2018, 42(4): 113−118.
    [23]
    王勇江, 陈克平, 姚勤. bHLH转录因子家族研究进展[J]. 遗传, 2008, 30(7):821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004

    Wang Y J, Chen K P, Yao Q. Research progress of bHLH transcription factor family[J]. Genetics, 2008, 30(7): 821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004
    [24]
    刘文文, 李文学. 植物bHLH转录因子研究进展[J]. 生物技术进展, 2013, 3(1):7−11.

    Liu W W, Li W X. Research progress of plant bHLH transcription factors[J]. Progress in Biotechnology, 2013, 3(1): 7−11.
    [25]
    Manassero N G, Viola I L, Welchen E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111−127.
    [26]
    De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica[J/OL]. Scientific Reports, 2015, 5(1): 16265[2018−11−30]. https://doi.org/10.1038/srep16265.
    [27]
    Kieffer M, Master V, Waites R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis[J]. The Plant Journal for Cell & Molecular Biology, 2011, 68(1): 147−158.
    [28]
    张春雷. 拟南芥TCP15、TCP22基因功能的研究[D]. 兰州: 兰州大学, 2012.

    Zhang C L. Study on the function of TCP15 and TCP22 genes in Arabidopsis thaliana[D]. Lanzhou: Lanzhou University, 2012.
    [29]
    冯志娟, 徐盛春, 刘娜, 等. 植物TCP转录因子的作用机理及其应用研究进展[J]. 植物遗传资源学报, 2018, 19(1):112−121.

    Feng Z J, Xu S C, Liu N, et al. Molecular mechanisms and applications of TCP transcription factors in plants[J]. Journal of Plant Genetic Resources, 2018, 19(1): 112−121.
    [30]
    Mukhopadhyay P, Tyagi A K, Tyagi A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J/OL]. Scientific Reports, 2015, 5: 9998 [2018−11−30]. https://doi.org/10.1038/srep09998.
    [31]
    Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J]. The Plant Journal, 2013, 76(6): 901−913. doi: 10.1111/tpj.2013.76.issue-6
    [32]
    Xiaoyan W, Jiong G, Zheng Z, et al. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana[J]. The Plant Journal, 2015, 82(1): 151−162. doi: 10.1111/tpj.2015.82.issue-1
    [33]
    刘春浩, 梁楠松, 于磊, 等. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报, 2017, 39(6):22−31.

    Liu C H, Liang N S, Yu L, et al. Cloning of TCP4 transcription factor from ash and expression analysis under stress and hormone[J]. Journal of Beijing Forestry University, 2017, 39(6): 22−31.
    [34]
    Lei N, Yu X, Li S, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress[J]. Scientific Reports, 2017, 7(1): 10016. doi: 10.1038/s41598-017-09398-5
    [35]
    杨洋. 白桦BpTCP7基因的功能研究[D]. 哈尔滨: 东北林业大学, 2016.

    Yang Y. Function analysis of BpTCP7 gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2016.
    [36]
    Viola I L, Camoirano A, Gonzalez D H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis[J]. Plant Physiology, 2015, 34(1): 35−40.

Catalog

    Article views (2119) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return