Citation: | Luan Jiayu, An Linjun, Ren Li, Li Huiyu. Cloning and expression characteristics analysis of BpTCP2 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2019, 41(8): 57-66. DOI: 10.13332/j.1000-1522.20180430 |
[1] |
Ma J, Liu F, Wang Q, et al. Comprehensive analysis of TCP transcription factors and their expression during cotton (Gossypiumarboreum) fiber early development[J/OL]. Scientific Reports, 2016, 6(1): 21535 [2018−11−30]. https://doi.org/10.1038/srep21535.
|
[2] |
冯雅岚, 熊瑛, 张均, 等. TCP转录因子在植物发育和生物胁迫响应中的作用[J]. 植物生理学报, 2018, 54(5):22−30.
Feng Y L, Xiong Y, Zhang J, et al. The role of TCP transcription factors inplant development and biotic stress response[J]. Chinese Journal of Plant Physiology, 2018, 54(5): 22−30.
|
[3] |
Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 83: 794−799.
|
[4] |
Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4): 367−376. doi: 10.1016/S0092-8674(00)81523-8
|
[5] |
Nath U. Genetic control of surface curvature[J]. Science, 2003, 299: 1404−1407. doi: 10.1126/science.1079354
|
[6] |
Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425: 257−263. doi: 10.1038/nature01958
|
[7] |
Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39(6): 787−791. doi: 10.1038/ng2036
|
[8] |
Schommer C, Palatnik J F, Aggarwal P, et al. Control of Jasmonate Biosynthesis and Senescence by miR319 Targets[J/OL]. PLoS Biology, 2008, 6(9): e230 [2018−11−30]. https://doi.org/10.1371/journal.pbio.0060230.
|
[9] |
Mao C, Lu S, Lü B, et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis[J]. Plant Physiology, 2017, 174(3): 1747−1763. doi: 10.1104/pp.17.00542
|
[10] |
Tatematsu K, Nakabayashi K, Kamiya Y, et al. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J]. The Plant Journal, 2008, 53(1): 42−52. doi: 10.1111/tpj.2008.53.issue-1
|
[11] |
安家兴. 拟南芥TCP11调控维管束的发育[D]. 兰州: 兰州大学, 2012.
An J X. Arabidopsis thaliana TCP11 regulates the development of vascular bundles[D]. Lanzhou: Lanzhou University, 2012.
|
[12] |
Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plantgrowth and development[J]. The Plant Journal, 1999, 18(2): 215−222. doi: 10.1046/j.1365-313X.1999.00444.x
|
[13] |
Herve C, Dabos P, Bardet C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development[J]. Plant Physiology, 2009, 149(3): 1462−1477. doi: 10.1104/pp.108.126136
|
[14] |
周瑜. TCP转录因子通过促进PIFs活性和生长素合成基因的表达调控避荫反应[D]. 兰州: 兰州大学, 2018.
Zhou Y. TCP transcription factors regulate shade avoidance via promoting the activity of PIFs and the expression of auxin biosynthetic genes[D]. Lanzhou: Lanzhou University, 2018.
|
[15] |
Ubertimanasero N G, Lucero L E, Viola I L, et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins[J]. Journal of Experimental Botany, 2012, 63(2): 809−823. doi: 10.1093/jxb/err305
|
[16] |
Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulatethe activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. Plant Cell, 2010, 22(11): 3574−3588. doi: 10.1105/tpc.110.075598
|
[17] |
Danisman S, Van der Wal F, Dhondt S, et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J]. Plant Physiology, 2012, 159(4): 1511−1523. doi: 10.1104/pp.112.200303
|
[18] |
刘伟娜, 韩建民, 董金皋, 等. 棉花TCP家族转录因子基因GhTCP1的克隆与表达分析[J]. 棉花学报, 2010, 22(5):409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005
Liu W N, Han J M, Dong J G, et al. Cloning and expression analysis of cotton TCP family transcription factor gene GhTCP1[J]. Journal of Cotton, 2010, 22(5): 409−414. doi: 10.3969/j.issn.1002-7807.2010.05.005
|
[19] |
Steiner E, Efroni I, Gopalraj M, et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers[J]. Plant Cell, 2012, 24(1): 96−108. doi: 10.1105/tpc.111.093518
|
[20] |
Daviere J M, Wild M, Regnaul T, et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height[J]. Current Biology, 2014, 24(16): 1923−1928. doi: 10.1016/j.cub.2014.07.012
|
[21] |
宁坤, 杨洋, 马述山, 等. 11条白桦BpSPL家族基因的生物信息学和表达分析[J]. 林业科学研究, 2016, 29(5):646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004
Ning K, Yang Y, Ma S S, et al. Bioinformatics and expression analysis of 11 BpSPL family genes in Betula platyphylla[J]. Forest Research, 2016, 29(5): 646−653. doi: 10.3969/j.issn.1001-1498.2016.05.004
|
[22] |
董京祥, 任丽, 张园, 等. 白桦BpTCPs基因家族生物信息学及时空表达分析[J]. 南京林业大学报, 2018, 42(4):113−118.
Dong J X, Ren L, Zhang Y, et al. Analysis of temporal and spatial expression of BpTCPs gene family bioinformatics in Betula platensis[J]. Journal of Nanjing Forestry University, 2018, 42(4): 113−118.
|
[23] |
王勇江, 陈克平, 姚勤. bHLH转录因子家族研究进展[J]. 遗传, 2008, 30(7):821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004
Wang Y J, Chen K P, Yao Q. Research progress of bHLH transcription factor family[J]. Genetics, 2008, 30(7): 821−830. doi: 10.3321/j.issn:0253-9772.2008.07.004
|
[24] |
刘文文, 李文学. 植物bHLH转录因子研究进展[J]. 生物技术进展, 2013, 3(1):7−11.
Liu W W, Li W X. Research progress of plant bHLH transcription factors[J]. Progress in Biotechnology, 2013, 3(1): 7−11.
|
[25] |
Manassero N G, Viola I L, Welchen E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111−127.
|
[26] |
De Paolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica[J/OL]. Scientific Reports, 2015, 5(1): 16265[2018−11−30]. https://doi.org/10.1038/srep16265.
|
[27] |
Kieffer M, Master V, Waites R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis[J]. The Plant Journal for Cell & Molecular Biology, 2011, 68(1): 147−158.
|
[28] |
张春雷. 拟南芥TCP15、TCP22基因功能的研究[D]. 兰州: 兰州大学, 2012.
Zhang C L. Study on the function of TCP15 and TCP22 genes in Arabidopsis thaliana[D]. Lanzhou: Lanzhou University, 2012.
|
[29] |
冯志娟, 徐盛春, 刘娜, 等. 植物TCP转录因子的作用机理及其应用研究进展[J]. 植物遗传资源学报, 2018, 19(1):112−121.
Feng Z J, Xu S C, Liu N, et al. Molecular mechanisms and applications of TCP transcription factors in plants[J]. Journal of Plant Genetic Resources, 2018, 19(1): 112−121.
|
[30] |
Mukhopadhyay P, Tyagi A K, Tyagi A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways[J/OL]. Scientific Reports, 2015, 5: 9998 [2018−11−30]. https://doi.org/10.1038/srep09998.
|
[31] |
Li S, Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J]. The Plant Journal, 2013, 76(6): 901−913. doi: 10.1111/tpj.2013.76.issue-6
|
[32] |
Xiaoyan W, Jiong G, Zheng Z, et al. TCP transcription factors are critical for the coordinated regulation of ISOCHORISMATE SYNTHASE 1 expression in Arabidopsis thaliana[J]. The Plant Journal, 2015, 82(1): 151−162. doi: 10.1111/tpj.2015.82.issue-1
|
[33] |
刘春浩, 梁楠松, 于磊, 等. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报, 2017, 39(6):22−31.
Liu C H, Liang N S, Yu L, et al. Cloning of TCP4 transcription factor from ash and expression analysis under stress and hormone[J]. Journal of Beijing Forestry University, 2017, 39(6): 22−31.
|
[34] |
Lei N, Yu X, Li S, et al. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress[J]. Scientific Reports, 2017, 7(1): 10016. doi: 10.1038/s41598-017-09398-5
|
[35] |
杨洋. 白桦BpTCP7基因的功能研究[D]. 哈尔滨: 东北林业大学, 2016.
Yang Y. Function analysis of BpTCP7 gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2016.
|
[36] |
Viola I L, Camoirano A, Gonzalez D H. Redox-dependent modulation of anthocyanin biosynthesis by the TCP transcription factor TCP15 during exposure to high light intensity conditions in Arabidopsis[J]. Plant Physiology, 2015, 34(1): 35−40.
|