• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Jianjun, Lu Yuanchang, Zhao Xiuhai, Meng Jinghui, Xiang Wei. Development and application of density management diagram for Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 31-37. DOI: 10.13332/j.1000-1522.20190015
Citation: Wang Jianjun, Lu Yuanchang, Zhao Xiuhai, Meng Jinghui, Xiang Wei. Development and application of density management diagram for Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 31-37. DOI: 10.13332/j.1000-1522.20190015

Development and application of density management diagram for Pinus massoniana plantation

More Information
  • Received Date: January 14, 2019
  • Revised Date: April 03, 2019
  • Available Online: April 30, 2019
  • Published Date: April 30, 2019
  • ObjectiveStand density management diagram (SDMD) is an effective tool for designing, displaying and evaluating different management measures, and hence provides decision support for even-aged forest management. The objective of this study was first to construct a SDMD for Pinus massoniana plantation for the Tropical Research Center (TRC). Second, based on the SDMD, the stand density of TRC was evaluated and an early warning diagram (EWD) of stand density was further produced with relevant management suggestions.
    MethodThe data used in this present study consists of 238 permanent sample plots, which were established in 2011 and re-measured in 2013 and 2015. The Reineke self-thinning equation was used to develop the SDMD. Based on the SDMD, the EWD for TRC was produced using the forest management planning data.
    ResultBased on the optimal density upper and lower limits, dominant height model, volume model and site index model, we constructed the SDMD for Pinus massoniana plantation in TRC. According to the SDMD and the stand density, the EWD was constructed and the management suggestions were provided.
    ConclusionIn this study, we divided the Pinus massoniana plantation in TRC into three different stands, i.e., high-density stands, low-density stands and the optimal density stands. For the three different stands, different management strategies were proposed. For high-density stand, we can conduct the thinning operations to decrease the density and achieve optimal density stands conversion. For low-density stands, the management measures of replanting precious tree can be conducted, which could contribute to the development of reasonable density. Compared with the above two stands, the optimal density stands could not be conducted any management strategies, which can support the formulation of the Pinus massoniana plantation management strategies.
  • [1]
    Schnell S, Kleinn C, Álvarez González, J G. Stand density management diagrams for three exotic tree species in smallholder plantations in Vietnam[J]. Small-Scale Forestry, 2012, 11(4): 509−528. doi: 10.1007/s11842-012-9197-z
    [2]
    Newton P F. Stand density management diagrams: review of their development and utility in stand-level management planning[J]. Forest Ecology and Management, 1997, 98(3): 251−265. doi: 10.1016/S0378-1127(97)00086-8
    [3]
    Moore J R, Cown D J, Mckinley R B, et al. Effects of stand density and seedlot on three wood properties of young radiate pine grown at a dry-land site in New Zealand[J]. New Zealand Journal of Forestry Science, 2015, 45(1): 4. doi: 10.1186/s40490-015-0035-x
    [4]
    田猛, 曾伟生, 孟京辉, 等. 福建杉木人工林密度控制图研制及应用[J]. 西北林学院学报, 2015, 30(3):157−163. doi: 10.3969/j.issn.1001-7461.2015.03.27

    Tian M, Zeng W S, Meng J H, et al. Development and application of density management diagram for Cunninghamia lanceolata plantation in Fujian[J]. Journal of Northwest Forestry University, 2015, 30(3): 157−163. doi: 10.3969/j.issn.1001-7461.2015.03.27
    [5]
    Penner M, Swift E, Gagnon R, et al. A stand density management diagram for spruce-balsam fir mixtures in New Brunswick[J]. The Forestry Chronicle, 2007, 83(2): 187−197. doi: 10.5558/tfc83187-2
    [6]
    Newton P F, Lei Y, Zhang S Y. Stand-level diameter distribution yield model for black spruce plantations[J]. Forest Ecology and Management, 2005, 209(3): 181−192. doi: 10.1016/j.foreco.2005.01.020
    [7]
    Luis J F S, Fonseca T F. The allometric model in the stand density management of Pinus pinaster Ait[J]. Annals of Forest Science, 2004, 61(8): 807−814. doi: 10.1051/forest:2004077
    [8]
    López-Sánchez C, Rodríguez-Soalleiro R. A density management diagram including stand stability and crown fire risk for Pseudotsuga menziesii (Mirb.) Franco in Spain[J]. Mountain Research and Development, 2009, 29(2): 169−176. doi: 10.1659/mrd.1070
    [9]
    Barrio Anta M, Álvarez González, J G. Development of a stand density management diagram for even-aged pedunculate oak stands and its use in designing thinning schedules[J]. Forestry: an International Journal of Forest Research, 2005, 78(3): 209−216. doi: 10.1093/forestry/cpi033
    [10]
    Long J N, Shaw J D. A density management diagram for even-aged ponderosa pine stands[J]. Western Journal of Applied Forestry, 2005, 20(4): 205.
    [11]
    Vacchiano G, Motta R, Long J N, et al. A density management diagram for Scots pine (Pinus sylvestris L.): a tool for assessing the forest’s protective effect[J]. Forest Ecology and Management, 2008, 255(7): 2542−2554. doi: 10.1016/j.foreco.2008.01.015
    [12]
    Valbuena P, Peso D C, Bravo F. Stand density management diagrams for two mediterranean pine species in eastern Spain[J]. Investigación Agraria: Sistemas y Recursos Forestales, 2008, 17(2): 97−104. doi: 10.5424/srf/2008172-01026
    [13]
    尹泰龙, 韩福庆, 迟金城, 等. 林分密度控制图的编制与应用[J]. 中国林业科学, 1978(3):1−11.

    Yin T L, Han F Q, Chi J C, et al. Development and application of stand density management diagram[J]. Chinese Academy of Forestry, 1978(3): 1−11.
    [14]
    靳爱仙, 周国英, 史大林, 等. 马尾松人工林碳储量密度控制图的编制[J]. 西北林学院学报, 2009, 24(3):54−57.

    Jin A X, Zhou G Y, Shi D L, et al. Establishment of the Pinus massoniana carbon storage density control graph[J]. Journal of Northwest Forestry University, 2009, 24(3): 54−57.
    [15]
    向玉国, 郑小贤, 刘波云, 等. 福建将乐林场杉木碳储量密度控制图的编制[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8):99−104.

    Xiang Y G, Zheng X X, Liu B Y, et al. Establishment of carbon storage density management diagram for Chinese fir in Jiangle Forest Farm of Fujian Province[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8): 99−104.
    [16]
    Reineke L. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 1: 627−638.
    [17]
    Kmenta J. Elements of econometrics [M]. London: Collier Macmillan, 1986.
    [18]
    Leduc D J. A comparative analysis of the reduced major axis technique of fitting[J]. Canadian Journal of Forest Research, 1987, 17: 654−659.
    [19]
    Solomon D S, Zhang L. Maximum size-density relationships for mixed softwoods in the northeastern USA[J]. Forest Ecology and Management, 2002, 155(1): 163−170.
    [20]
    秦国峰, 周志春, 金国庆, 等. 马尾松速生丰产林不同培育目标的适宜造林密度[J]. 林业科学研究, 1999, 12(6):620−627. doi: 10.3321/j.issn:1001-1498.1999.06.010

    Qin G F, Zhou Z C, Jin G Q, et al. Determining optimum planting density of masson pine fast-growing and high-yielding plantations for various cultivation objectives[J]. Forest Research, 1999, 12(6): 620−627. doi: 10.3321/j.issn:1001-1498.1999.06.010
    [21]
    Meng J, Lu Y, Zeng J. Transformation of a degraded Pinus massoniana plantation into a mixed-species irregular forest: impacts on stand structure and growth in southern China[J]. Forests, 2014, 5(12): 3199−3221. doi: 10.3390/f5123199
    [22]
    梁瑞龙, 杨章旗, 蒙福祥. 广西马尾松(人工林)多形曲线地位指数表的研制[J]. 广西林业科学, 1996, 25(1):47−49.

    Liang R L, Yang Z Q, Meng F X. Development of multi-form curve status index table of Pinus massoniana (artificial forest) in Guangxi Province[J]. Guangxi Forestry Science, 1996, 25(1): 47−49.
  • Related Articles

    [1]Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278
    [2]Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450
    [3]Sun Qiaoyun, Bao Menghan, Huang Hanwen, Zhang Yujun. Boundary delimitation of the proposed Songnen Plain National Park of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(1): 103-112. DOI: 10.12171/j.1000-1522.20210418
    [4]Tang Weilu, Jin Kun. Preliminary study on night lodging habitat selection of Nomascus hainanus in Hainan Tropical Rainforest National Park, southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 113-126. DOI: 10.12171/j.1000-1522.20200185
    [5]YU Jia-lin, ZHANG Wei-guo, TIAN Kun, SONG Wei-hong, LI Qiu-ping, YANG Rong, ZHANG Yun. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. DOI: 10.13332/j.1000-1522.20160184
    [6]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [7]WANG Yong, QIAO Yong, SUN Xiang-yang. Soil taxonomy in Jiufeng National Forest Park, Beijing[J]. Journal of Beijing Forestry University, 2010, 32(3): 217-220.
    [8]CUI Li-juan, ZHANG Man-yin, LI Wei, WANG Yi-fei, SHANG Xiao-jing.. Management and assessment of national wetland parks.[J]. Journal of Beijing Forestry University, 2009, 31(5): 102-107.
    [9]SHI Qiang, HE Qing-tang. The best tourism environmental capacity of Zhangjiajie National Forest Park, southern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 143-147. DOI: 10.13332/j.1000-1522.2007.04.029
    [10]WANG Qing-kui, WANG Si-long, FENG Zong-wei. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
  • Cited by

    Periodical cited type(36)

    1. 张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
    2. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    3. 董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
    4. 包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
    5. 拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
    6. 刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
    7. 邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
    8. 阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
    9. 刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
    10. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    11. 阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
    12. 王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
    13. 王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
    14. 徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
    15. 曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
    16. 韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
    17. 王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
    18. 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
    19. 黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
    20. 王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
    21. 林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
    22. 白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
    23. 周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
    24. 白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
    25. 魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
    26. 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
    27. 李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
    28. 王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
    29. 任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
    30. 曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
    31. 陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
    32. 张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
    33. 阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 . 本站查看
    34. 曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
    35. 阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
    36. 王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 . 本站查看

    Other cited types(22)

Catalog

    Article views (1865) PDF downloads (116) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return