Advanced search
    Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. DOI: 10.13332/j.1000-1522.20190070
    Citation: Liu Jingjing, Ma Lan, Li Junyou, Chen Peiyan, Zhang Jinge, Sun Zhanwei, Yan Lin, Zhang Dong. Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions[J]. Journal of Beijing Forestry University, 2019, 41(8): 115-123. DOI: 10.13332/j.1000-1522.20190070

    Experimental study on hydrodynamic characteristics of overland flow under different resistance conditions

    More Information
    • Received Date: February 24, 2019
    • Revised Date: April 14, 2019
    • Available Online: July 09, 2019
    • Published Date: July 31, 2019
    • ObjectiveThe hydraulic characteristics of overland flow are important for clarifying soil erosion and sediment yield mechanism. In this experiment, the overland flow resistance and related hydrodynamic characteristics of the slope under different resistance conditions were studied. Investigating the hydraulic characteristics of overland flow under different morphological conditions is to provide theoretical support for guiding the rational allocation of soil and water conservation slope measures.
      MethodThe study used a self-made bed to flush the sink, selecting different coverage (0%, 10%, 15%, 20%)gravel and grass bed surface, and performing indoor fixed bed scouring test under the condition of different flow rate (15–120 L/(min·m)) and different slope (3°–15°)
      ResultThe results showed that: (1) the flow velocity on different slopes increased with the increase of flow rate and slope, and the flow velocity of the grass surface was larger than the flow velocity of the gravel bed under the same coverage, up to 2.2 times. (2) The Froude number (Fr) of different underlying surfaces increased with the increase of slope, and the Darcy-weisbach drag coefficient increased with the increase of coverage. Under the same coverage, the gravel bed surface was larger than the grass bed surface, the highest was 10.9 times of the grass. (3) The flow resistance of different underlying surface slopes was linearly positively correlated with the flow rate. Under the same coverage, the slope flow of the gravel bed surface was larger than that of the grass bed, and the highest was 2.2 times of the grass bed surface. (4) Slope and coverage had significant effects on overland flow resistance. The overland flow resistance increased with the increase of slope, and increased with the increase of coverage, and had a good linear correlation.
      ConclusionThrough the study of the slope flow resistance under different conditions, it can provide a basis for the establishment of hillside hydrological models and erosion physical models based on runoff dynamics processes. And it provides theoretical support for guiding the rational allocation of soil and water conservation slope measures.
    • [1]
      Horton R E, Horton R, Horton H. Erosinal development of streams and their drainage basins: hidrophysical approach to quantitative morfology[J]. Journal of the Japanese Forestry Society, 1945, 56(3): 275−370.
      [2]
      张宽地, 王光谦, 孙晓敏, 等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报, 2014, 30(15):182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024

      Zhang K D, Wang G Q, Sun X M, et al. Experiment on hydraulic characteristics of shallow open channel flow on slope[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 182−189. doi: 10.3969/j.issn.1002-6819.2014.15.024
      [3]
      罗榕婷, 张光辉, 曹颖. 坡面含沙水流水动力学特性研究进展[J]. 地理科学进展, 2009, 28(4):567−574. doi: 10.11820/dlkxjz.2009.04.012

      Luo R T, Zhang G H, Cao Y. Research progress on hydrodynamic characteristics of sediment-laden flow on slopes[J]. Progress in Geography, 2009, 28(4): 567−574. doi: 10.11820/dlkxjz.2009.04.012
      [4]
      张光辉, 卫海燕, 刘宝元. 坡面流水动力学特性研究[J]. 水土保持学报, 2001, 15(1):58−61. doi: 10.3321/j.issn:1009-2242.2001.01.016

      Zhang G H, Wei H Y, Liu B Y. Study on hydro-dynamic properties of overland flow[J]. Journal of Soil and Water Conservation, 2001, 15(1): 58−61. doi: 10.3321/j.issn:1009-2242.2001.01.016
      [5]
      王俊杰, 张宽地, 杨苗, 等. 雨强和糙度对坡面薄层流水动力学特性的影响[J]. 农业工程学报, 2017, 33(9):147−154. doi: 10.11975/j.issn.1002-6819.2017.09.019

      Wang J J, Zhang K D, Yang M, et al. Influence of rainfall and roughness on hydrodynamic characteristics of overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 147−154. doi: 10.11975/j.issn.1002-6819.2017.09.019
      [6]
      戴矜君, 程金花, 张洪江, 等. 野外放水条件下坡面流水动力学特征[J]. 中国水土保持科学, 2016, 14(3):52−59.

      Dai J J, Cheng J H, Zhang H J, et al. Hydrodynamic characteristics of surface runoff on field scour[J]. Science of Soil and Water Conservation, 2016, 14(3): 52−59.
      [7]
      郭明明, 王文龙, 李建明, 等. 野外模拟降雨条件下矿区土质道路径流产沙及细沟发育研究[J]. 农业工程学报, 2016, 32(24):155−163. doi: 10.11975/j.issn.1002-6819.2016.24.020

      Guo M M, Wang W L, Li J M, et al. Runoff, sediment yield and rill development characteristic of unpaved road in mining area under field artificial simulated rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 155−163. doi: 10.11975/j.issn.1002-6819.2016.24.020
      [8]
      Roche N, Daïan J, Lawrence D S L. Hydraulic modeling of runoff over a rough surface under partial inundation[J]. Water Resources Research, 2007, 43(8): 159−164.
      [9]
      Myers T G. Modeling laminar sheet flow over rough surfaces[J]. Water Resources Research, 2002, 38(11): 1230−1236.
      [10]
      张光辉. 退耕驱动的近地表特性变化对土壤侵蚀的潜在影响[J]. 中国水土保持科学, 2017, 15(4):143−154.

      Zhang G H. Potential effects of changes in near soil surface characteristics driven by farmland abandonment on soil erosion[J]. Science of Soil and Water Conservation, 2017, 15(4): 143−154.
      [11]
      刘青泉, 李家春, 陈力, 等. 坡面流及土壤侵蚀动力学(Ⅰ): 坡面流[J]. 力学进展, 2004, 34(3):360−372. doi: 10.3321/j.issn:1000-0992.2004.03.007

      Liu Q Q, Li J C, Chen L, et al. Slope flow and soil erosion dynamics (Ⅰ): overland flow[J]. Advances in Mechanics, 2004, 34(3): 360−372. doi: 10.3321/j.issn:1000-0992.2004.03.007
      [12]
      张光辉. 坡面薄层流水动力学特性的试验研究[J]. 水科学进展, 2002, 13(2):159−165. doi: 10.3321/j.issn:1001-6791.2002.02.005

      Zhang G H. Experimental research on hydrodynamic characteristic of slope thin layer flow[J]. Advances in Water Science, 2002, 13(2): 159−165. doi: 10.3321/j.issn:1001-6791.2002.02.005
      [13]
      潘成忠, 上官周平. 降雨和坡度对坡面流水动力学参数的影响[J]. 应用基础与工程科学学报, 2009, 17(6):843−851. doi: 10.3969/j.issn.1005-0930.2009.06.004

      Pan C Z, Shangguan Z P. Effects of rainfall and slope gradient on hydrodynamic parameters of slope flow[J]. Journal of Basic Science and Engineering, 2009, 17(6): 843−851. doi: 10.3969/j.issn.1005-0930.2009.06.004
      [14]
      Rauws G. Laboratory experiments on resistance to overland flow due to composite roughness[J]. Journal of Hydrology, 1988, 103(1−2): 37−52.
      [15]
      Abrahams A D, Parsons A J. Hydraulics of interrill overland flow on stone-covered desert surfaces[J]. Catena, 1994, 23(1−2): 111−140. doi: 10.1016/0341-8162(94)90057-4
      [16]
      Atkinson J F, Abrahams A D, Krishnan C, et al. Shear stress partitioning and sediment transport by overland flow[J]. Journal of Hydraulic Research, 2000, 38(1): 37−40. doi: 10.1080/00221680009498356
      [17]
      梁洪儒, 余新晓, 樊登星, 等. 砾石覆盖对坡面产流产沙的影响[J]. 水土保持学报, 2014, 28(3):57−61.

      Liang H R, Yu X X, Fan D X, et al. Effect of gravel-sand muchling on slope runoff and sediment yield[J]. Journal of Soil and Water Conservation, 2014, 28(3): 57−61.
      [18]
      柳晓娜, 樊登星, 余新晓, 等. 大粗糙单元对坡面流水动力学特性的影响[J]. 水土保持学报, 2018, 32(4):43−50.

      Liu X N, Fan D X, Yu X X, et al. Influence of large-scale roughness element on hydraulic characteristics of overland flow[J]. Journal of Soil and Water Conservation, 2018, 32(4): 43−50.
      [19]
      姚文艺. 坡面流流速计算的研究[J]. 中国水土保持, 1993(3):25−29, 65.

      Yao W Y. Study on slope flow velocity calculation[J]. Soil and Water Conservation in China, 1993(3): 25−29, 65.
      [20]
      Zhang G H, Luo R T, Cao Y, et al. Correction factor to dye-measured flow velocity under varying water and sediment discharges[J]. Journal of Hydrology, 2010, 389(1−2): 205−213. doi: 10.1016/j.jhydrol.2010.05.050
      [21]
      赵春红, 高建恩, 徐震. 牧草调控绵沙土坡面侵蚀机理[J]. 应用生态学报, 2013, 24(1):113−121.

      Zhao C H, Gao J E, Xu Z. Mechanisms of grass control on slope erosion of Miansha soil[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 113−121.
      [22]
      Hu S, Abrahams A D. Resistance to overland flow due to bed-load transport on plane mobile beds[J]. Earth Surface Processes & Landforms, 2010, 29(13): 1691−1701.
      [23]
      高延良, 董旭, 杨帆, 等. 坡面植被水流水动力学特性研究[J]. 水力发电学报, 2016, 35(9):38−47. doi: 10.11660/slfdxb.20160905

      Gao Y L, Dong X, Yang F, et al. Experimental study on hydraulic characteristics of overland flows under vegetation cover[J]. Journal of Hydroelectric Engineering, 2016, 35(9): 38−47. doi: 10.11660/slfdxb.20160905
      [24]
      占顺. 砾石覆盖对坡面流水动力学特性试验研究[D]. 武汉: 华中农业大学, 2015.

      Zhan S. Effects of rock fragment cover on hydraulics by overland flow[D]. Wuhan: Huazhong Agricultural University, 2015.
      [25]
      余冰, 王军光, 蔡崇法, 等. 不同模拟糙度定床坡面集中水流水力学特性研究[J]. 水土保持学报, 2015, 29(2):50−54.

      Yu B, Wang J G, Cai C F, et al. Study on hydraulic properties of concentrated flow under different artificial surface roughness[J]. Journal of Soil and Water Conservation, 2015, 29(2): 50−54.
      [26]
      敬向锋, 吕宏兴, 张宽地, 等. 不同糙率坡面水力学特征的试验研究[J]. 水土保持通报, 2007, 27(2):33−38. doi: 10.3969/j.issn.1000-288X.2007.02.008

      Jing X F, Lü H X, Zhang K D, et al. Experimental study of overland flow hydromechanics under different degrees of roughness[J]. Bulletin of Soil and Water Conservation, 2007, 27(2): 33−38. doi: 10.3969/j.issn.1000-288X.2007.02.008
      [27]
      Salman M, Manochehr G, Ali J. Effect of rock fragments cover on distance of rill erosion initiation and overland flow hydraulics[J]. International Journal of Soil Science, 2012, 7(3): 100−107. doi: 10.3923/ijss.2012.100.107
      [28]
      Guo T L, Wang Q X, Li D Q, et al. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China[J]. Journal of Soils and Sediments, 2010, 10(6): 1200−1208. doi: 10.1007/s11368-010-0257-8
      [29]
      吴秋菊, 吴发启, 王林华. 土壤结皮坡面流水动力学特征[J]. 农业工程学报, 2014, 30(1):73−80. doi: 10.3969/j.issn.1002-6819.2014.01.010

      Wu Q J, Wu F Q, Wang L H. Hydrodynamic characteristics of overland floundersoil crusts condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 73−80. doi: 10.3969/j.issn.1002-6819.2014.01.010
      [30]
      翟艳宾. 缓坡面薄层水流水动力学特性的试验研究[D]. 杨凌: 西北农林科技大学, 2013.

      Zhai Y B. Study on hydrodynamic characteristic of sheet flow on overland slope surface [D]. Yangling: Northwest A&F University, 2013.
      [31]
      张冠华. 茵陈蒿群落分布格局对坡面侵蚀及坡面流水动力学特性的影响[D]. 杨凌: 西北农林科技大学, 2012.

      Zhang G H. Influence of patterned Artemisia capillaris on slope erosion and overland flow hydrodynamic characteristics[D]. Yangling: Northwest A&F University, 2012.
      [32]
      李占斌, 鲁克新, 丁文峰. 黄土坡面土壤侵蚀动力过程试验研究[J]. 水土保持学报, 2002, 16(2):5−7, 49. doi: 10.3321/j.issn:1009-2242.2002.02.002

      Li Z B, Lu K X, Ding W F. Experimental study on dynamic processes of soil erosion on loess slope[J]. Journal of Soil and Water Conservation, 2002, 16(2): 5−7, 49. doi: 10.3321/j.issn:1009-2242.2002.02.002
      [33]
      Bunte K, Poesen J. Effects of rock fragment covers on erosion and transport of noncohesive sediment by shallow overland flow[J]. Water Resources Research, 1993, 29(5): 1415−1424. doi: 10.1029/92WR02706
      [34]
      吴卿, 杨春霞, 甄斌, 等. 草被覆盖对坡面径流剪切力影响的试验研究[J]. 人民黄河, 2010, 32(8):96, 99.

      Wu Q, Yang C X, Zhen B, et al. Experimental study on the effect of grass cover on the shear force of slope runoff[J]. Yellow River, 2010, 32(8): 96, 99.
    • Related Articles

      [1]Wei Yunqi, Wang Yang, Yin Hao. A low-density tree digital twin model for refined urban greening management: a case study of tree wind disaster risk management[J]. Journal of Beijing Forestry University, 2025, 47(3): 139-150. DOI: 10.12171/j.1000-1522.20240400
      [2]Guo Jian, Qiao Hongyong, Yuan Tao, Wang Shubiao, Mou Ningning, Jia Jianfei, Xi Fan, Xia Wei. Tree safety risk assessment in urban parks: taking Beijing Zoo as an example[J]. Journal of Beijing Forestry University, 2025, 47(3): 128-138. DOI: 10.12171/j.1000-1522.20210200
      [3]Li Weiwei, Yang Xueqing, Zhang Yiming, Feng Xin, Wang Bo, Du Jianhua, Chen Feng, Liu Xiaodong. Hazard assessment of forest fire in Miyun District of Beijing based on the subcompartment scale[J]. Journal of Beijing Forestry University, 2024, 46(2): 75-86. DOI: 10.12171/j.1000-1522.20230227
      [4]Zong Xuezheng, Tian Xiaorui, Ma Shuai, Liu Chang. Quantitative assessment for forest fire risk based on fire simulation: taking the Subtropical Forest Experimental Center of Chinese Academy of Forestry as an example[J]. Journal of Beijing Forestry University, 2022, 44(9): 83-90. DOI: 10.12171/j.1000-1522.20210328
      [5]ZHANG Qiang, MA Chao, YANG Hai-long, WANG Zhi-gang, TU Jian.. Characteristics of low frequency debris flow and risk analysis in Beijing mountainous region.[J]. Journal of Beijing Forestry University, 2015, 37(12): 92-99. DOI: 10.13332/j.1000-1522.20150177
      [6]GONG Jun-jie, YANG Hua, DENG Hua-feng. Assessment of ecological risks of landscape along the Ming Great Wall in Beijing[J]. Journal of Beijing Forestry University, 2015, 37(8): 60-68. DOI: 10.13332/j.1000-1522.20140303
      [7]LI Dan, DAI Wei, YAN Zhi-gang, WANG Ni-hong. Habitat evaluation system of larch plantation based on fuzzy analytic hierarchy[J]. Journal of Beijing Forestry University, 2014, 36(4): 75-81. DOI: 10.13332/j.cnki.jbfu.2014.04.015
      [8]ZHENG Ran, YUE Ye, WANG Xiao-hui, WEN Zhi-yong, GUAN Wen-bin. Method of risk assessment and management for ancient trees[J]. Journal of Beijing Forestry University, 2013, 35(6): 144-150.
      [9]XIAO Hua-shun, ZHANG Gui, LIU Da-peng, CAI Xue-li. Selecting forest fire spreading models based on the Fuzzy Data Mining technique[J]. Journal of Beijing Forestry University, 2006, 28(6): 93-97.
      [10]LIU Hai-jun, LUO You-qing, WEN Jun-bao, ZHANG Zhi-ming, FENG Ji-hua, TAO Wan-qiang. Pest risk assessment of Dendroctonus valens,Hyphantria cunea and Apriona swainsoni swainsoni in Beijing area[J]. Journal of Beijing Forestry University, 2005, 27(2): 81-87.
    • Cited by

      Periodical cited type(3)

      1. 管奥,毋玉婷,陈宇,孙扬,祁鹏志,郭宝英. 曼氏无针乌贼转录组微卫星特征分析. 渔业科学进展. 2018(03): 144-151 .
      2. 杜改改,孙鹏,索玉静,韩卫娟,刁松锋,傅建敏,李芳东. 基于柿雌雄花芽转录组测序的SSR和SNP多态性分析. 中国农业大学学报. 2017(10): 45-55 .
      3. 梅利那,范付华,崔博文,文晓鹏. 基于马尾松转录组的SSR分子标记开发及种质鉴定. 农业生物技术学报. 2017(06): 991-1002 .

      Other cited types(5)

    Catalog

      Article views (1863) PDF downloads (74) Cited by(8)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return