• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
Citation: Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128

Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors

More Information
  • Received Date: March 11, 2019
  • Revised Date: April 16, 2019
  • Available Online: September 27, 2019
  • Published Date: September 30, 2019
  • ObjectiveExtremely arid oasis is a sensitive area of global change, especially water shortage and changes in hydrological processes had led to strong heterogeneity in the oasis soil environment. How plants adapt to high soil heterogeneity is a key scientific issue in the maintenance of oasis plant diversity. So investigating plant leaves, the most sensitive organ traits and their response to soil water and salt factors is helpful to reveal the fundamental strategies of plant adaptation under environmental heterogeneity conditions.
    MethodIn this study, the common plant leaves of Ejina, a typical desert oasis, were selected as research objects, and eight leaf functional traits of 25 plants were selected, including leaf thickness (LT), leaf dry matter content (LDMC), specific leaf area (SLA), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), leaf carbon to nitrogen ratio (C/N) and leaf nitrogen to phosphorus ratio (N/P). The correlations between functional traits and their characteristics at the community level were analyzed. And the response of leaf functional traits to different soil water and salt environments was discussed.
    ResultResults showed that: (1) each leaf functional trait had varying degrees of variation, among which SLA had the highest coefficient of variation and LCC had the smallest coefficient of variation. (2) There was a significant synergy or trade-off between some functional traits. LT and SLA, LDMC and SLA, LPC and LDMC, LNC and C/N, LPC and N/P were significantly negatively correlated (P < 0.01), and there was a significant negative correlation between LCC and LT, LNC and LCC, C/N and N/P (P < 0.05). LDMC and C/N, SLA and LPC, LCC and C/N, N/P and LCC, LNC and N/P were significantly positively correlated (P < 0.01), and there was a significantly positive correlation with LDMC and LCC, SLA and LNC (P < 0.05). (3) Leaf functional traits had a certain degree of difference in response to soil water and salt factors. In the low-water and low-salt environment, the leaves were adapted to drought-stressed soil environment by increasing LDMC, LNC, N/P, and lowering LPC and C/N. In the low-water and high-salt environment, the leaves improved LNC and LPC to reduce the soil environment dominated by salt stress by reducing LDMC, C/N and N/P. In the (relative) high-water and high-salt environment, the leaves were mainly adapted to the soil environment with relatively low salt stress and relatively sufficient water content by reducing LNC, N/P and increasing C/N.
    ConclusionIn the Ejina Oasis Region, the leaf functional traits of plant community adapted to the extreme arid environment through a certain degree of variation and a synergistic-balanced functional combination. The response to soil water and salt factors also had a certain degree of difference. Among them, the effect of salt content on the leaf functional traits of the plant community was more critical. This study provides a scientific basis for further research on the adaptation mechanism of oasis plants in extreme arid regions to soil water and salt factors.
  • [1]
    Bonan G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320: 1444−1449. doi: 10.1126/science.1155121
    [2]
    方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应[J]. 科学通报, 2018, 63(2):136−140.

    Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 2018, 63(2): 136−140.
    [3]
    Schroter D. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 2005, 310: 1333−1337. doi: 10.1126/science.1115233
    [4]
    Ricklefs R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2004, 7(1): 1−15. doi: 10.1046/j.1461-0248.2003.00554.x
    [5]
    Guittar J, Goldberg D, Klanderud K, et al. Can trait patterns along gradients predict plant community responses to climate change?[J]. Ecology, 2016, 97(10): 2791. doi: 10.1002/ecy.1500
    [6]
    毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述[J]. 中国沙漠, 2012, 32(1):33−41.

    Mao W, Li Y L, Zhang T H, et al. Research advances of plant leaf traits at different ecology scales[J]. Journal of Desert Research, 2012, 32(1): 33−41.
    [7]
    Mooney K A, Halitschke R, Kessler A, et al. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 2010, 327: 1642−1644. doi: 10.1126/science.1184814
    [8]
    孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019

    Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning[J]. Journal of Plant Ecology, 2007, 31(1): 150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019
    [9]
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and-low rainfall and high-and-low nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [10]
    苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4):1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032

    Su P X, Yan Q D. Stable carbon isotope variation in plants and their indicating significance along the inland Heihe River Basin of northwestern China[J]. Acta Ecologica Sinica, 2008, 28(4): 1616−1624. doi: 10.3321/j.issn:1000-0933.2008.04.032
    [11]
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. PNAS, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [12]
    李修鹏, 杨晓东, 余树全, 等. 基于功能性状的常绿阔叶植物防火性能评价[J]. 生态学报, 2013, 33(20):6604−6613.

    Li X P, Yang X D, Yu S Q, et al. Functional trait-based evaluation of plant fireproofing capability for subtropical evergreen broad-leaved woody plant[J]. Acta Ecologica Sinica, 2013, 33(20): 6604−6613.
    [13]
    Roa-Fuentes L L, Templer P H, Campo J. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico[J]. Oecologia, 2015, 179(2): 585−597. doi: 10.1007/s00442-015-3354-y
    [14]
    Jin T T, Liu G H, Fu B J, et al. Assessing adaptability of planted trees using leaf traits: a case study with Robinia pseudoacacia L. in the Loess Plateau, China[J]. Chinese Geographical Science, 2011, 21(3): 290−303. doi: 10.1007/s11769-011-0470-4
    [15]
    杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展[J]. 生态学杂志, 2012, 31(3):702−713.

    Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits woody plants and their relationships with environmental change: a review[J]. Chinese Journal of Ecology, 2012, 31(3): 702−713.
    [16]
    祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecologica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013
    [17]
    张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747−5758.

    Zhang H W, Ma J Y, Sun W, et al. Altitudinal variational in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747−5758.
    [18]
    冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6):619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001

    Feng Q H, Shi Z M, Dong L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(6): 619−627. doi: 10.3773/j.issn.1005-264x.2010.06.001
    [19]
    张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3): 736−749.
    [20]
    Ripley B, Frole K, Gilbert M. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses[J]. Annals of Botany, 2010, 105(3): 493−503. doi: 10.1093/aob/mcp307
    [21]
    Conti G, Díaz S. Plant functional diversity and carbon storage: an empirical test in semi-arid forest ecosystems[J]. Journal of Ecology, 2013, 101(1): 18−28. doi: 10.1111/1365-2745.12012
    [22]
    Spasojevic M J, Grace J B, Harrison S, et al. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients[J]. Journal of Ecology, 2014, 102(2): 447−455. doi: 10.1111/1365-2745.12204
    [23]
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [24]
    Bagousse-Pinguet Y L, Gross N, Maestre F T, et al. Testing the environmental filtering concept in global drylands[J]. Journal of Ecology, 2017, 105(4): 1058−1069. doi: 10.1111/1365-2745.12735
    [25]
    Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: convex hull volume[J]. Ecology, 2006, 87(6): 1465−1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2
    [26]
    周欣, 左小安, 赵学勇, 等. 科尔沁沙地中南部34种植物叶功能性状及其相互关系[J]. 中国沙漠, 2015, 35(6):1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117

    Zhou X, Zuo X A, Zhao X Y, et al. Plant functional traits and interrelationships of 34 plant species in south central Horqin Sandy Land, China[J]. Journal of Desert Research, 2015, 35(6): 1489−1495. doi: 10.7522/j.issn.1000-694X.2014.00117
    [27]
    刘金环, 曾德慧, Don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010

    Liu J H, Zeng D H, Lee D K. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010
    [28]
    Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [29]
    Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x
    [30]
    Wang R L, Yu G R, He N P, et al. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China[J]. Journal of Geographical Sciences, 2016, 26(1): 15−26. doi: 10.1007/s11442-016-1251-x
    [31]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [32]
    Cornelissen J H C, Aerts R, Cerabolini B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4): 611−619. doi: 10.1007/s004420100752
    [33]
    李永华, 罗天祥, 卢琦, 等. 青海省沙珠玉治沙站17种主要植物叶性因子的比较[J]. 生态学报, 2005, 25(5):994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008

    Li Y H, Luo T X, Lu Q, et al. Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province[J]. Acta Ecologica Sinica, 2005, 25(5): 994−999. doi: 10.3321/j.issn:1000-0933.2005.05.008
    [34]
    施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物功能性状沿气候梯度的变化规律[J]. 水土保持研究, 2012, 19(1):107−111, 116.

    Shi Y, Wen Z M, Gong S H, et al. Trait variations along a climatic gradient in hilly area of Loess Plateau[J]. Research of Soil and Water Conservation, 2012, 19(1): 107−111, 116.
    [35]
    Wright I J, Westoby M. Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs, leaf function in 28 Australian woody species[J]. Functional Ecology, 2000, 14(1): 97−107. doi: 10.1046/j.1365-2435.2000.00393.x
    [36]
    Güsewell S. N : P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2010, 164(2): 243−266.
    [37]
    Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [38]
    Mclean E H, Prober S M, Stock W D, et al. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa[J]. Plant, Cell & Environment, 2014, 37(6): 1440−1451.
    [39]
    韩玲, 赵成章, 徐婷, 等. 不同土壤水分条件下洪泛平原湿地芨芨草叶片厚度与叶脉性状的关系[J]. 植物生态学报, 2017, 41(5):529−538. doi: 10.17521/cjpe.2016.0123

    Han L, Zhao C Z, Xu T, et al. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China[J]. Chinese Journal of Plant Ecology, 2017, 41(5): 529−538. doi: 10.17521/cjpe.2016.0123
    [40]
    盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581−1589.

    Pan Y F, Chen X B, Jiang Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589.
    [41]
    郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11):2000−2010.

    Qie Y D, Jiang L M, Lü G H, et al. Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem[J]. Ecology and Environmental Sciences, 2018, 27(11): 2000−2010.
    [42]
    McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
    [43]
    李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2):153−160.

    Li S J, Su P X, Zhang H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants[J]. Plant Physiology Journal, 2013, 49(2): 153−160.
    [44]
    祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J]. 生态学报, 2008, 28(1):122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014

    Qi J, Ma K M, Zhang Y X. Comparisons on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Moutain of Beijing[J]. Acta Ecologica Sinica, 2008, 28(1): 122−128. doi: 10.3321/j.issn:1000-0933.2008.01.014
    [45]
    安慧. 放牧干扰对荒漠草原植物叶性状及其相互关系的影响[J]. 应用生态学报, 2012, 23(11):2991−2996.

    An H. Effects of grazing disturbance on leaf traits and their interrelationships of plants in desert steppe[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 2991−2996.
    [46]
    Vendramini F, Sandra D, Gurvich D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytologist, 2002, 154(1): 147−157. doi: 10.1046/j.1469-8137.2002.00357.x
    [47]
    李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2):304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019

    Li Y L, Cui J H, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304−311. doi: 10.3321/j.issn:1000-0933.2005.02.019
    [48]
    贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
    [49]
    Franco A C, Bustamante M, Caldas L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3): 326−335. doi: 10.1007/s00468-004-0394-z
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1541) PDF downloads (94) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return