• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
FU Yun-lin, ZHAO Guang-jie. Microstructure of wood-silicon dioxide composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124.
Citation: FU Yun-lin, ZHAO Guang-jie. Microstructure of wood-silicon dioxide composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124.

Microstructure of wood-silicon dioxide composite

More Information
  • Received Date: October 29, 2005
  • Available Online: May 14, 2024
  • In order to know completely the microstructure of wood-silicon dioxide composite,the authors analyzed the relationship between cell wall expansion percentage and weight gain percentage(WGP),and the dimensional changes during moisture absorption treatment.We used the following techniques or instruments in our analyses: Xray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray analyzer(EDAX).Resultsincluded: 1) WGP was proportional to the moisture content of pretreated wood.Cell wall expansion percentage increased with the increase of WGP and tangential cell wall expansion percentage was higher than radial expansion.There was a slightly negative correlation between the percentage of dimensional change and WGP during the moisture absorption treatment.2) SEM analysis showed that silicon dioxide occupied free space of wood.EDAX analysis showed that silicon dioxide was found in cell wall of wood for the air-dried and moistening pretreatment of wood,and in both cell wall and cell cavity for the water saturated wood.The percentages of quality silicon in wood-silicon dioxide composite prepared from air-dried,moistening and water saturated wood were 4.11%,9.22% and 17.07%.3) XRD analysis showed that silicon dioxide was also found in cell wall of wood.Its crystallinity decreased with an increase of silicon dioxide content in wood-silicon dioxide composite.
  • Related Articles

    [1]Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287
    [2]Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197
    [3]Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325
    [4]Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
    [5]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [6]ZHAO Guang-jie. The course of chemical reaction and microstructure evolution of wood-based carbon fibers during carbonization and graphitization[J]. Journal of Beijing Forestry University, 2010, 32(2): 201-204.
    [7]MA Xiao-jun, ZHAO Guang-jie. Effects of carbonized temperature on microstructure of carbon fiber precursors prepared from liquefied wood[J]. Journal of Beijing Forestry University, 2009, 31(5): 112-116.
    [8]SUN De-lin, LIU Wen-jin, YU Xian-chun. Effects of sintering temperature and PF resin content on phases and microstructure characteristics of woodceramics.[J]. Journal of Beijing Forestry University, 2009, 31(4): 112-117.
    [9]ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150.
    [10]FU Yun-lin, ZHAO Guang-jie. Stress relaxation of silicon dioxide\|wood composite[J]. Journal of Beijing Forestry University, 2008, 30(1): 119-123.
  • Cited by

    Periodical cited type(21)

    1. 邹艳萍,王献轲,张雨湉,费本华,陈红. SiO_2气凝胶纳米颗粒浸渍改性对竹材性能的影响. 林业工程学报. 2022(04): 46-51 .
    2. 连琰,朱桥,王徐鑫,赵子剑. 香樟木改性复合木材的制备及性能研究. 怀化学院学报. 2020(05): 79-84 .
    3. 张南南,许民. 二氧化硅联合热处理改性对橡胶木性能的影响. 林业工程学报. 2019(02): 38-42 .
    4. 孙敏洋,曹金珍. SiO_2溶胶在欧洲赤松和火炬松边材中的渗透性. 北京林业大学学报. 2015(09): 85-90 . 本站查看
    5. 孙敏洋,曹金珍. 初始含水率对SiO_2溶胶在两种木材中渗透性的影响. 林业机械与木工设备. 2015(06): 34-39 .
    6. 张彦娟,林兰英,傅峰. 硅溶胶/丙烯酸酯复配乳液改性人工林杉木. 木材工业. 2015(04): 36-39 .
    7. 李忠,肖飞跃,赵嘉,董智明,陈金妮,赵亚莉,张恒琪. 竹纤维/SiO_2杂化材料的制备、结构与性能. 应用化工. 2015(11): 2026-2028 .
    8. 吴霞,王晓宇,王超,李文定,吴燕,张洋,樊世坤. 微/纳纤丝的分离工艺及其表观形态和粒径分析. 木材加工机械. 2014(05): 51-52+25 .
    9. 江泽慧,王汉坤,张求慧,田根林,余雁. 木材、竹材及其炭化物负载SiO_2凝胶的比较. 林业科学. 2013(04): 98-102 .
    10. 林兰英,傅峰. 强化复合木材细胞壁的纳米压痕测试分析. 北京林业大学学报. 2012(05): 139-143 . 本站查看
    11. 曹文静,陆烨,徐莉,姜维娜,周晓燕. 氧化铁-木纤维复合材料的制备及性能初探. 林业科技开发. 2011(03): 106-108 .
    12. 姜维娜,曹文静,徐莉,杨星,周晓燕. 铝溶胶改性杨木纤维性能的研究. 南京林业大学学报(自然科学版). 2011(03): 101-105 .
    13. 符韵林,莫引优,刘一星,乔梦吉,陈文军. 纳米二氧化硅在涂料中的应用及其增强木材表面特性的构想. 浙江农林大学学报. 2011(04): 644-652 .
    14. 刘艳萍,张洋,吴羽飞,李文定,刘聪. 酸法制备杨木微/纳纤丝及其表征. 高分子通报. 2010(02): 112-115 .
    15. 刘艳萍,张洋. 杨木微/纳纤丝的制备与表征. 林业科技开发. 2009(02): 83-85 .
    16. 符韵林,赵广杰. 二氧化硅/木材复合材料的应力松弛. 北京林业大学学报. 2008(01): 119-123 . 本站查看
    17. Optimum preparation technology for Chinese fir wood/Ca-montmorillonite (Ca-MMT) composite board. Forestry Studies in China. 2008(03): 199-204 .
    18. 李君,李坚,刘一星,邱坚. 有机气凝胶的制备、特性及在木材科学中的应用. 东北林业大学学报. 2008(12): 76-78 .
    19. 陈桂丹,符韵林,郑伟杰,黄中宇,韦庆吉,黄斌,韦志超,刘钊. 二氧化硅处理杉木木材增重率与物性之间的关系. 广西科学. 2008(04): 441-444+448 .
    20. 江楠,宋晓岚,徐大余. 纳米SiO_2复合材料研究进展. 粉末冶金材料科学与工程. 2007(05): 272-276 .
    21. 徐峰,史铁钧,张克宏,王鹏. SiO_2/杉木粉复合材料的制备和表征. 复合材料学报. 2007(03): 84-88 .

    Other cited types(23)

Catalog

    Article views (2051) PDF downloads (77) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return