• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CAO Jin-zhen, D.Pascal Kamdem. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1-5.
Citation: CAO Jin-zhen, D.Pascal Kamdem. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1-5.

Surface energy of wood treated with water-borne wood preservatives

More Information
  • Received Date: July 24, 2005
  • Available Online: May 14, 2024
  • In this study, the contact angles of four different reference liquids (distilled water, diiodomethane, formadide and glycerol) formed on the surfaces of wood treated with chromated copper arsenate (CCA) and other two new-emerging copper-based water-borne systems (commercial name: NW and NS) were measured with a sessile drop method. Based on the contact angle data, the surface energy was obtained using a acid-base approach. The total surface energy consisted of a Lifshiz-van der Waals (LW) parameter and an acid-base (AB) parameter.Resultsshowed that NW and CCA treatments made the wood surface more hydrophobic while an NS treatment had the reverse effect on the wood surface mainly due to the increased penetration of earlywood. By using three liquids, diiodomethane, formamide and distilled water, the total surface energy obtained for untreated earlywood, untreated latewood, CCA-treated earlywood, CCA-treated latewood, NW-treated earlywood, NW-treated latewood, NS-treated earlywood and NS-treated latewood were 43.1, 44.5, 43.4, 45.1, 49.4, 40.6, 46.0, and 40.9 mJ/m2, respectively. The surface energy of CCA-treated wood was almost the same as that of untreated wood. After NW and NS treatments, the surface energy of both earlywood and latewood both changed little. But for an entire piece of wood, the average surface energy of wood after NW and NS treatments remained the same.
  • Related Articles

    [1]Li Zhezhe, Shi Jiangjing, Chen Hong, Wu Zhihui, Ji Jiagui, Hu Yongmao. Influence of asymmetric bending behavior of bamboo on performance of curved components[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240360
    [2]Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
    [3]Yang Guochao, Wang Nan, Huang Xinxin, Geng Yaru, Liu Jing, Zhang Qiuhui. Variation of microscopic morphology and chemical composition of marigold stalk[J]. Journal of Beijing Forestry University, 2020, 42(1): 149-156. DOI: 10.12171/j.1000-1522.20190311
    [4]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [5]DONG Yan-he, WANG Cheng-zhang, YE Jian-zhong, ZHOU Hao. Extraction process and chemical constituents of lacquer wax.[J]. Journal of Beijing Forestry University, 2010, 32(4): 256-260.
    [6]YANG Zhong, ZHAO Rong-jun, FEI Ben-hua, JIANG Ze-hui. Correlation of wood crystallinity with chemical composition and annual ring characteristics of slash pine trees[J]. Journal of Beijing Forestry University, 2010, 32(4): 223-226.
    [7]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
    [8]ZHU Bencheng, , ZHAO Guangjie. Affecting factors and the optimum technological parameters in waste particleboard liquefaction.[J]. Journal of Beijing Forestry University, 2009, 31(1): 120-124.
    [9]FU Shen-yuan, , CHENG Shu-na, ZHAO Guang-jie. Kinetics of Moso bamboo liquefaction with different catalysts.[J]. Journal of Beijing Forestry University, 2008, 30(6): 119-123.
    [10]CHANG De-long, SONG Zhan-qian, HUANG Wen-hao, HU Wei-hua, LI Fu-hai, ZHANG Quan-lai. Impacts of fungi on chemical components and physical structure of Paulownia elongata wood[J]. Journal of Beijing Forestry University, 2006, 28(3): 145-149.
  • Cited by

    Periodical cited type(14)

    1. 刘晓玲,陈松武,罗玉芬,陈桂丹,林家纯,栾洁. 不同家系马尾松木材经溶胶凝胶法改良后耐光性比较研究. 江苏林业科技. 2022(03): 48-53 .
    2. 邢东,张燕,胡建鹏,姚利宏. 纳米填料在木材漆膜中的应用. 化工新型材料. 2021(10): 201-205 .
    3. 刘德山,张静,于丽丽,朱礼智,马晓军. 纳米SiO_2在木质包装材料改性中的应用. 上海包装. 2019(02): 20-22 .
    4. 周彦瑜,闫小星,钱星雨,王晓婧,夏明,唐林芝,汪雨. 二氧化硅和硅烷偶联剂协同改性对水性涂料性能的影响. 科技创新与应用. 2018(03): 35-36 .
    5. 程思,符韵林. SiO_2和TiO_2改良木材表面性质的研究进展. 江西农业学报. 2018(05): 33-38 .
    6. 蒯荟羽,闫小星,杨河莉,郝苗苗,陈诚,戴钰洁. 二氧化硅对水性涂料改性及漆膜封闭性的影响. 科技创新与应用. 2017(36): 20-21 .
    7. 李敏,程秀兰,邹婕. 聚氨酯清漆涂饰松木家具表面抗冲击的研究. 林业机械与木工设备. 2017(05): 26-28+31 .
    8. 徐立娜,赵聪,张九天. 浅谈聚氨酯涂料现状及发展趋势. 化工管理. 2016(08): 85 .
    9. 朱文凯,吴燕,曹坤丽,吴佳敏. 硅溶胶含量对UV固化水性木器涂料漆膜质量的影响. 林业工程学报. 2016(06): 148-152 .
    10. 郑林禄,马强,朱梅花,方丽琼. 纳米二氧化硅改性聚氨酯的制备及应用研究进展. 化学工程与装备. 2015(06): 203-205+210 .
    11. 潘学成,闫小星,孙敏怡,徐伟. 有机硅树脂改性对UV固化木器涂料性能的影响. 家具. 2014(03): 32-36 .
    12. 闫小星,赵静,吴燕,徐伟. 协同改性对水性UV木器涂料性能的影响. 林业科技开发. 2014(06): 75-78 .
    13. 杨忠,张毛毛,刘亚娜,吕斌,孙学东. 木材涂层失效研究综述. 林业科学. 2014(02): 127-133 .
    14. 闫小星,吴燕,毛卫国,徐伟. SiO_2改性对紫外光固化木器涂料性能的影响. 南京林业大学学报(自然科学版). 2014(04): 173-176 .

    Other cited types(9)

Catalog

    Article views (8752) PDF downloads (82) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return