• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
Citation: Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024

Analysis of microstructure and chemical components of southern pine during initial brown-rot decay

More Information
  • Received Date: January 22, 2021
  • Revised Date: February 24, 2021
  • Available Online: March 08, 2021
  • Published Date: April 15, 2021
  •   Objective  The objective of this study is to investigate the effects of brown-rot decay on color, microstructure, and chemical components of wood at the early stage of decay test, as well as provide a theoretical basis for the further explanation of wood degradation mechanism.
      Method  The sapwood of southern pine was decayed by Gloeophyllum trabeum for different durations. The microstructure of decayed wood was characterized by field emission scanning electron microscopy (FE-SEM), in order to elucidate the access pathways of brown-rot fungi into wood. Meanwhile, colorimetry, Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the mass loss, color change, chemical component, functional group change, and crystallinity change of wood after different decay stages.
      Result  The lightness of wood decreased and the total color difference increased during the decay test, with a trend toward rufous surface color. Mycelium entered into the wood through cell structures such as ray parenchyma cells, pits and tracheids, and basically completed the initial colonization after 20 d. The mass loss of wood at the early stage of brown-rot decay was mainly caused by the degradation of hemicellulose, while the degradation of cellulose was less pronounced. At the same time, the distance between crystal planes of cellulose decreased to the minimum value (3.962 Å) while the relative crystallinity increased significantly (47.02%), which prohibited the degradation of cellulose. Therefore, the mass loss rate of wood slowed down after that.
      Conclusion  At the early stage of brown-rot decay on southern pine wood, hyphae entered into wood by pits, ray parenchyma cells and tracheids. Hemicellulose in cell wall was preferentially degraded and the lattice distance of crystalline cellulose reduced while the relative crystallinity increased. This research could provide a theoretical basis for the further exploration of brown-rot degradation mechanism of wood, as well as wood preservation.
  • [1]
    戴玉成, 徐梅卿, 杨忠, 等. 中国储木及建筑木材腐朽菌(Ⅰ)[J]. 林业科学研究, 2008, 21(1):49−54.

    Dai Y C, Xu M Q, Yang Z, et al. Wood-decaying fungi on timber or wooden constructions in China[J]. Forest Research, 2008, 21(1): 49−54.
    [2]
    Curling S F, Clausen C A, Windandy J E. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay (solid wood products)[J]. Forest Products Journal, 2002, 52(7): 34−37.
    [3]
    Schwarze F W M R, Mattheck C, Engels J. Fungal strategies of wood decay in trees[M]. Heidelberg: Springer, 2000.
    [4]
    Schwarze F W M R. Wood decay under the microscope[J]. Fungal Biology Reviews, 2007, 21(4): 133−170. doi: 10.1016/j.fbr.2007.09.001
    [5]
    葛晓雯, 王立海, 侯捷建, 等. 褐腐杨木微观结构, 力学性能与化学成分的关系研究[J]. 北京林业大学学报, 2016, 38(10):112−122.

    Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10): 112−122.
    [6]
    Huang X, Kocaefe D, Kocaefe Y, et al. Combined effect of acetylation and heat treatment on the physical, mechanical and biological behavior of Jack pine (Pinus banksiana) wood[J]. European Journal of Wood and Wood Products, 2018, 76(2): 525−540. doi: 10.1007/s00107-017-1232-5
    [7]
    程献宝. 初期褐腐对杉木宏观和组织力学性能的影响[D]. 北京: 中国林业科学研究院, 2011.

    Cheng X B. The influence of incipient brown rot on the properties of Chinese fir at macroscopic and tissue level[D]. Beijing: Chinese Academy of Forestry, 2011.
    [8]
    Kirk T K, Highley T L. Quantitative changes in structural components of conifer woods during decay by white-and brown-rot fungi[J]. Phytopathology, 1973, 63(11): 1338. doi: 10.1094/Phyto-63-1338
    [9]
    Highley T L. Changes in chemical-components of hardwood and softwood by brown-rot fungi[J]. Material and Organismen, 1987, 22(1): 39−45.
    [10]
    李改云, 江泽慧, 任海青, 等. 木材褐腐过程中化学组成对其液化的影响[J]. 北京林业大学学报, 2009, 31(1):113−119.

    Li G Y, Jiang Z H, Ren H Q, et al. Relation of chemical components of brown-rotted wood and its liquefaction characteristics[J]. Journal of Beijing Forestry University, 2009, 31(1): 113−119.
    [11]
    Witomski P, Radomski A, Zawadzki J, et al. Variation in cellulose properties in the common pine (Pinus sylvestris L.) wood during white- and brown-rot decay induced by Coniophora puteana and Trametes versicolor fungi[J]. Wood Research, 2013, 58(2): 165−172.
    [12]
    Wilcox W W. Review of literature on the effects of early stages of decay on wood strength[J]. Wood and Fiber, 1978, 9(4): 252−257.
    [13]
    Janzen S, Nicholas D D. Relation of transverse compression properties and the degree of brown rot biodeterioration of Pinus glabra in the soil block test[J]. Holzforschung, 2016, 70(11): 1067−1071. doi: 10.1515/hf-2016-0004
    [14]
    国家质量监督检验检疫总局, 国家标准化管理委员会. 木材耐久性能第一部分: 天然耐腐性实验室试验方法: GB/T 13942.1—2009[S]. 北京: 中国标准出版社, 2009.

    AQSIQ, SAC. Durability of wood (part 1): method for laboratory test of natural decay resistance: GB/T 13942.1—2009[S]. Beijing: Standards Press of China, 2009.
    [15]
    国家技术监督局. 造纸原料有机溶剂抽出物含量的测定: GB/T 2677.6—1994[S]. 北京: 中国标准出版社, 1994.

    SQSB. Fibrous raw material-determination of solvent extractives: GB/T 2677.6—1994[S]. Beijing: Standards Press of China, 1994.
    [16]
    ASTM Standards. Standard test method for acid-insoluble lignin in wood: D 1106—96[S]. West Conshohocken PA: ASTM International, 1996.
    [17]
    Browning B L. Methods of wood chemistry [M]. Vol. II. New York: Wiley InterScience, 1967.
    [18]
    任世学, 姜贵全, 屈红军. 植物纤维化学实验教程[M]. 哈尔滨: 东北林业大学出版社, 2008: 53−54.

    Ren S X, Jiang G Q, Qu H J. Plant fiber chemistry experiment tutorial[M]. Harbin: Northeast Forestry University Press, 2008: 53−54.
    [19]
    Nam S, French A D, Condon B D, et al. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II[J]. Carbohydrate Polymers, 2016, 135: 1−9. doi: 10.1016/j.carbpol.2015.08.035
    [20]
    Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29: 786−794. doi: 10.1177/004051755902901003
    [21]
    李坚. 木材科学[M]. 北京: 高等教育出版社, 2002: 434−439.

    Li J. Wood science[M]. Beijing: Higher Education Press, 2002: 434−439.
    [22]
    金重为, 邰瓞生, 尤纪雪. 天然耐腐木材的抗腐力及其在腐朽过程中化学成分的变化[J]. 林业科学, 1989, 25(5):447−452.

    Jin Z W, Tai D S, You J X. Decay resistance of natural durable species and the changes in amounts of major components during decay of wood by Coriolus versicolor and Gloeophyllum trabeum[J]. Scientia Silvae Sinicae, 1989, 25(5): 447−452.
    [23]
    Popescu C M, Popescu M C, Vasile C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy[J]. Microchemical Journal, 2010, 95(2): 377−387. doi: 10.1016/j.microc.2010.02.021
    [24]
    Li G Y, Huang L H, Hse C Y, et al. Chemical compositions, infrared spectroscopy, and X-ray diffractometry study on brown-rotted woods[J]. Carbohydrate Polymers, 2011, 85(3): 560−564. doi: 10.1016/j.carbpol.2011.03.014
    [25]
    Rowell R M. Handbook of wood chemistry and wood composites[M]. Florida: CRC Press, 2012.
    [26]
    Fackler K, Stevanic J S, Ters T, et al. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy[J]. Enzyme and Microbial Technology, 2010, 47(6): 257−267. doi: 10.1016/j.enzmictec.2010.07.009
    [27]
    Popescu C M, Popescu M C, Vasile C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy[J]. International Journal of Biological Macromolecules, 2011, 48(4): 667−675. doi: 10.1016/j.ijbiomac.2011.02.009
    [28]
    Howell C, Hastrup A C S, Jara R, et al. Effects of hot water extraction and fungal decay on wood crystalline cellulose structure[J]. Cellulose, 2011, 18: 1179−1190. doi: 10.1007/s10570-011-9569-0
    [29]
    Zhu Y, Mahaney J, Jellison J, et al. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3): 329−338.
  • Related Articles

    [1]Wang Yuning, Feng Tianjiao, Sun Long, Liu Xiru, Liu Yabo, Wang Ping. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240228
    [2]Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088
    [3]Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287
    [6]SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143
    [7]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [8]ZHOU Xiao-jing, LI Ke, FAN Hang, LIU Tong, LI Chun-fang, MA Chao, LIU Yu-jun. Composition and amounts of fatty acids in Perilla frutescens seed oils of different varieties and areas.[J]. Journal of Beijing Forestry University, 2015, 37(1): 98-114. DOI: 10.13332/j.cnki.jbfu.2015.01.005
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]LU Shao-wei, WANG Xiong-bin1, YU Xin-xiao1, LU Shao-bo1, 3, LI Jin-hai4, WU Jun4. Influence of closing hillsides on vegetation diversity restoration in artificial coniferous forests.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 121-126.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (1555) PDF downloads (72) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return