高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

灰黄青霉生物染色对毛竹性能影响的研究

王皓炜 于志明 张扬 唐睿琳 刘源松 王晓倩 黄思琪 赵博识

王皓炜, 于志明, 张扬, 唐睿琳, 刘源松, 王晓倩, 黄思琪, 赵博识. 灰黄青霉生物染色对毛竹性能影响的研究[J]. 北京林业大学学报, 2020, 42(6): 149-156. doi: 10.12171/j.1000-1522.20200150
引用本文: 王皓炜, 于志明, 张扬, 唐睿琳, 刘源松, 王晓倩, 黄思琪, 赵博识. 灰黄青霉生物染色对毛竹性能影响的研究[J]. 北京林业大学学报, 2020, 42(6): 149-156. doi: 10.12171/j.1000-1522.20200150
Wang Haowei, Yu Zhiming, Zhang Yang, Tang Ruilin, Liu Yuansong, Wang Xiaoqian, Huang Siqi, Zhao Boshi. Effects of Penicillium griseofulvum’s biological dyeing on the properties of Phyllostachys heterocycla[J]. Journal of Beijing Forestry University, 2020, 42(6): 149-156. doi: 10.12171/j.1000-1522.20200150
Citation: Wang Haowei, Yu Zhiming, Zhang Yang, Tang Ruilin, Liu Yuansong, Wang Xiaoqian, Huang Siqi, Zhao Boshi. Effects of Penicillium griseofulvum’s biological dyeing on the properties of Phyllostachys heterocycla[J]. Journal of Beijing Forestry University, 2020, 42(6): 149-156. doi: 10.12171/j.1000-1522.20200150

灰黄青霉生物染色对毛竹性能影响的研究

doi: 10.12171/j.1000-1522.20200150
基金项目: 北京市优秀人才培养资助(2017000020124G092)
详细信息
    作者简介:

    王皓炜。主要研究方向:木质复合材料。Email:2247760528@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    于志明,教授,博士生导师。主要研究方向:新型人造板及高性能生物质复合材料。Email:yuzhiming@bjfu.edu.cn 地址:同上

  • 中图分类号: S785

Effects of Penicillium griseofulvum’s biological dyeing on the properties of Phyllostachys heterocycla

  • 摘要: 目的竹材变色现象普遍发生,但针对其这一特质的功能性开发仍然不足。利用竹材易发生生物变色的特性,可以诱导灰黄青霉侵染毛竹来实现竹材的生物染色。方法通过真菌培养、接种与侵染、灭菌干燥等步骤制备得到灰黄青霉侵染后的毛竹;通过SEM、ATR-FTIR、表面色差测试、表面接触角测试、表面粗糙度测试、质量损失率测试、24 h吸水率测试和力学强度测试来分析灰黄青霉侵染行为对毛竹的微观形貌、化学组分、表面性能和物理力学性能的影响。结果灰黄青霉分泌的红褐色渗出液累积并渗透附着于竹材表层;灰黄青霉菌丝由维管束中的导管进入毛竹内部蔓延生长,并在毛竹内部产生色素;纤维素、木质素的降解和半纤维素的轻微降解主要发生在侵染前期;侵染行为使毛竹表面色差值不断增大,色调逐渐转变为暗红,形成独特的装饰效果,同时表面接触角变小,表面粗糙度无明显变化;侵染行为对毛竹的物理力学性能影响较小,质量损失率略有升高,24 h吸水率下降,力学性能的下降主要发生在侵染的10 ~ 20 d。结论证明了竹材生物染色在不严重影响竹材性能的同时能取得较好的染色效果,为竹材生物染色技术进一步的研究提供了基础和理论依据。

     

  • 图  1  试样力学性能试验方法

    Figure  1.  Test method for mechanical properties of samples

    图  2  不同侵染时间的毛竹微观形貌

    Figure  2.  SEM of Phyllostachys heterocycla with different infection time

    图  3  不同侵染时间的毛竹红外光谱图

    Figure  3.  Infrared spectrogram of Phyllostachys heterocycla with different infection time

    图  4  不同侵染时间的毛竹表面颜色

    Figure  4.  Surface color of Phyllostachys heterocycla with different infection time

    图  5  不同侵染时间的毛竹表面接触角

    Figure  5.  Contact angle of Phyllostachys heterocycla surfacewith different infection time

    图  6  不同侵染时间的毛竹表面粗糙度

    Figure  6.  Surface roughness of Phyllostachys heterocycla with different infection time

    图  7  不同侵染时间的毛竹的质量损失率和24 h吸水率

    Figure  7.  Mass loss ratio and 24 hour water absorption of Phyllostachys heterocycla with different infection time

    表  1  不同侵染时间的毛竹表面色差

    Table  1.   Surface color difference of Phyllostachys heterocycla at different infection time

    时间 Time/dΔL*Δa*Δb*ΔE*
    0 (对照 control)0 0 0 0
    10− 25.1711.881.9920.98
    20− 33.7613.220.5427.56
    30− 40.1815.640.8233.87
    40− 43.3816.722.2737.66
    注:ΔL*为明度差,Δa*为红绿轴色品指数差,Δb*为黄蓝轴色品指数差,ΔE*为色差。Notes:ΔL* is lightness difference, Δa* is color index difference of red green axis , Δb* is color index difference of yellow blue axis , and ΔE* is color difference.
    下载: 导出CSV

    表  2  不同侵染时间的毛竹的顺纹抗压强度、抗弯强度和抗弯弹性模量

    Table  2.   Compression strength parallel to grain, bending strength and bending modulus of Phyllostachysheterocycla with different infection time

    时间
    Time/d
    顺纹抗压强度
    Compression strength parallel to grain/MPa
    抗弯强度
    Bending strength/MPa
    抗弯弹性模量
    Bending modulus/GPa
    0 (对照 control)62.50 ± 3.93102.16 ± 1.845.10 ± 0.15
    1061.78 ± 4.84101.62 ± 3.935.14 ± 0.07
    2056.73 ± 3.5794.63 ± 3.454.78 ± 0.12
    3055.92 ± 5.2490.51 ± 1.954.69 ± 0.18
    4052.58 ± 3.7889.95 ± 2.634.74 ± 0.17
    下载: 导出CSV
  • [1] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1):2−7.

    Li Y J, Xu B, Zhang Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. Journal of Forestry Engineering, 2016, 1(1): 2−7.
    [2] 张齐生. 竹类资源加工的特点及其利用途径的展望[J]. 中国林业产业, 2004(1):19−21.

    Zhang Q S. Characteristics in bamboo processing and the prospect of bamboo utilization[J]. China Forestry Industry, 2004(1): 19−21.
    [3] 杨文龙. 小型竹材间伐机系统设计与仿真[D]. 哈尔滨: 东北林业大学, 2015.

    Yang W L. Design and simulation of small bamboo cutting machine system[D]. Harbin: Northeast Forestry University, 2015.
    [4] 胡玉安, 何梅, 刘玉香, 等. 竹材染色机理初探[J]. 南方林业科学, 2017, 45(4):55−58.

    Hu Y A, He M, Liu Y X, et al. A preliminary study on the dyeing mechanism of bamboo[J]. South China Forestry Science, 2017, 45(4): 55−58.
    [5] 王正国, 段新芳. 竹藤材染色研究现状及展望[J]. 西北林学院学报, 2009, 24(2):124−127.

    Wang Z G, Duan X F. Advances and expectation trend of bamboo and rattan cane dyeing[J]. Journal of Northwest Forestry University, 2009, 24(2): 124−127.
    [6] 王艳伟, 孙伟圣, 杨植辉. 木材高温热处理技术的研究进展及展望[J]. 林业机械与木工设备, 2014, 15(9):8−11. doi: 10.3969/j.issn.2095-2953.2014.09.003

    Wang Y W, Sun W S, Yang Z H. Research progress and prospects of wood high-temperature heat treatment technology[J]. Forestry Machinery & Woodworking Equipment, 2014, 15(9): 8−11. doi: 10.3969/j.issn.2095-2953.2014.09.003
    [7] 杜春贵, 舒甜甜, 叶斌斌. 竹材染色研究概况与展望[J]. 竹子研究汇刊, 2010, 29(4):1−4.

    Du C G, Shu T T, Ye B B. Advances in bamboo dyeing research[J]. Journal of Bamboo Research, 2010, 29(4): 1−4.
    [8] 赵博识, 于志明, 漆楚生, 等. 木材微生物变色与调控研究现状和展望[J]. 林产工业, 2019, 46(8):1−4.

    Zhao B S, Yu Z M, Qi C S, et al. Research status and prospect of wood microorganism stain and control[J]. China Forest Products Industry, 2019, 46(8): 1−4.
    [9] 何海珊, 邱坚, 甘昌涛. 花斑木研究现状及展望[J]. 西南林业大学学报, 2013, 33(6):94−98. doi: 10.3969/j.issn.2095-1914.2013.06.018

    He H S, Qiu J, Gan C T. Research status and prospect on spalted wood[J]. Journal of Southwest Forestry University, 2013, 33(6): 94−98. doi: 10.3969/j.issn.2095-1914.2013.06.018
    [10] Tudor D, Robinson S C, Cooper P A. The influence of moisture content variation on fungal pigment formation in spalted wood[J]. AMB Express, 2012, 2(1): 69. doi: 10.1186/2191-0855-2-69
    [11] Tudor D, Robinson S C, Cooper P A. The influence of pH on pigment formation by lignicolous fungi[J]. International Biodeterioration & Biodegradation, 2013, 80: 22−28.
    [12] Zhao B S, Yu Z M, Zhang Y, et al. Physical and mechanical properties of rubberwood (Hevea brasiliensis) dyed with Lasiodiplodia theobromae[J]. Journal of Wood Science, 2019, 65(1): 1−10. doi: 10.1186/s10086-019-1786-4
    [13] 赵博识, 于志明, 张扬, 等. 可可球二孢的培养及其侵染橡胶木表面性能的研究[J]. 北京林业大学学报, 2020, 42(3):160−167. doi: 10.12171/j.1000-1522.20190382

    Zhao B S, Yu Z M, Zhang Y, et al. Growth of Lasiodiplodia theobromae and its effect on the surface properties of rubber wood[J]. Journal of Beijing Forestry University, 2020, 42(3): 160−167. doi: 10.12171/j.1000-1522.20190382
    [14] Liu Y, Zhang Y, Yu Z, et al. Microbial dyes: dyeing of poplar veneer with melanin secreted by Lasiodiplodia theobromae isolated from wood[J]. Applied Microbiology and Biotechnology, 2020, 104: 3367−3377. doi: 10.1007/s00253-020-10478-2
    [15] Liu Y, Yu Z, Zhang Y, et al. Microbial dyeing-infection behavior and influence of Lasiodiplodia theobromae in poplar veneer[J]. Dyes and Pigments, 2020, 173: 1−5. doi: 10.1016/j.dyepig.2019.107988
    [16] 马星霞, 蒋明亮, 覃道春. 竹材受不同败坏真菌危害的宏观和微观变化[J]. 林业科学, 2012, 48(11):76−82. doi: 10.11707/j.1001-7488.20121112

    Ma X X, Jiang M L, Qin D C. Macro- and micro-structural changes in bamboo after attack by various fungi[J]. Scientia Silvae Sinicae, 2012, 48(11): 76−82. doi: 10.11707/j.1001-7488.20121112
    [17] 陈杰, 郭天文, 汤琳, 等. 灰黄青霉CF3对马铃薯土传病原真菌的拮抗性及其促生作用[J]. 植物保护学报, 2013, 40(4):301−308.

    Chen J, Guo T W, Tang L, et al. The antagonism of Penicillium griseofulvum CF3 against soil-borne fungal pathogens of potato and its growthpromoting effect on the plant[J]. Journal of Plant Protection, 2013, 40(4): 301−308.
    [18] Colotelo N. Physiological and biochemical properties of the exudate associated with developing sclerotia of Sclerotinia sclerotiorum (Lib.) DeBary[J]. Canadian Journal of Microbiology, 1973, 19(1): 73−79. doi: 10.1139/m73-011
    [19] Colotelo N. Fungal exudates[J]. Canadian Journal of Microbiology, 1978, 24(10): 1173−1181. doi: 10.1139/m78−191
    [20] 韩建荣, 姚鹏, 戚敬, 等. 青霉PT95菌株渗出液的产生及理化性质的研究[J]. 山西大学学报(自然科学版), 2007, 30(2):274−278.

    Han J R, Yao P, Qi J, et al. Study on the physiological and biochemical properties of exudates from Penicillium sp. PT95[J]. Journal of Shanxi University (Nature Science Edition), 2007, 30(2): 274−278.
    [21] 杨守禄. 竹材用硅凝胶固着铜防霉剂制备与性能研究[D]. 长沙: 中南林业科技大学, 2014.

    Yang S L. Preparation and properties of copper anchored by silica gel anti-mold chemical used for bamboo[D]. Changsha: Central South University of Forestry and Technology, 2014.
    [22] 雍宬, 常馨曼, 关明杰. 超声破壁效应对竹材横向渗透性能的影响[J]. 竹子研究汇刊, 2013, 32(4):33−36, 41.

    Yong C, Chang X M, Guan M J. Effect of ultrasonic wall-breaking on bamboo transverse permeability[J]. Journal of Bamboo Research, 2013, 32(4): 33−36, 41.
    [23] Wei X Y, Tao D H, Sheng X L, et al. Modification of poplar wood using polyhexahydrotriazine and its effect on hygroscopicity[J]. Journal of Wood Chemistry and Technology, 2018, 38(3): 214−223. doi: 10.1080/02773813.2018.1432654
    [24] Shen D K, Gu S, Bridgwater A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical & Applied Pyrolysis, 2010, 87(2): 199−206.
    [25] Casas A, María V A, Oliet M, et al. FTIR analysis of lignin regenerated from Pinus radiata and Eucalyptus globulus woods dissolved in imidazolium-based ionic liquids[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(4): 472−480.
    [26] 江泽慧, 于文吉, 叶克林. 探针法测量与分析竹材表面粗糙度[J]. 木材工业, 2001, 15(5):14−16. doi: 10.3969/j.issn.1001-8654.2001.05.004

    Jiang Z H, Yu W J, Ye K L. Analysis of bamboo surface roughness by stylus method[J]. China Wood Industry, 2001, 15(5): 14−16. doi: 10.3969/j.issn.1001-8654.2001.05.004
    [27] 刘培培. 不同化学改性对辐射松及毛竹的霉变性能研究[D]. 哈尔滨: 东北林业大学, 2017.

    Liu P P. Study on the mildew resistance of chemically modified radiata pine and moso bamboo[D]. Harbin: Northeast Forestry University, 2017.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  594
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 修回日期:  2020-05-23
  • 网络出版日期:  2020-06-08
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回