高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京松山油松叶功能性状沿海拔梯度的变化及其环境解释

刘思文 艾也博 刘艳红

刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47-55. doi: 10.12171/j.1000-1522.20200292
引用本文: 刘思文, 艾也博, 刘艳红. 北京松山油松叶功能性状沿海拔梯度的变化及其环境解释[J]. 北京林业大学学报, 2021, 43(4): 47-55. doi: 10.12171/j.1000-1522.20200292
Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. doi: 10.12171/j.1000-1522.20200292
Citation: Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. doi: 10.12171/j.1000-1522.20200292

北京松山油松叶功能性状沿海拔梯度的变化及其环境解释

doi: 10.12171/j.1000-1522.20200292
基金项目: 国家重点研发计划项目(2017YFC0504004),北京市重点学科项目(20140801)
详细信息
    作者简介:

    刘思文。主要研究方向:生物多样性保护。Email:liusiwenbj@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    刘艳红,教授,博士生导师。主要研究方向:森林生态学。Email:liuyh@bjfu.edu.cn 地址:同上

  • 中图分类号: S718.52

Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain

  • 摘要:   目的  本研究探讨油松叶功能性状沿海拔梯度的变化规律,量化地形因子和土壤因子在驱动植物种内性状变异方面的贡献,为预测未来气候变化背景下植物叶片性状时空变异及其机制提供科学依据。  方法  以北京松山南坡油松为研究对象,通过相关性分析和冗余分析等方法,研究其8种叶功能性状沿海拔梯度的变化规律及其与地形和土壤因子的关系。  结果  (1)油松叶面积(LA)、比叶面积(SLA)及单位质量的磷含量(MP)随海拔梯度升高呈降低趋势,而叶干物质含量(LDMC)、单位质量的氮含量(MN)、单位面积的氮含量(AN)及叶氮磷比(LN:P)沿海拔梯度升高呈增加趋势,单位面积的磷含量(AP)沿着海拔梯度没有明显的变化趋势。其各叶性状存在较大的种内变异(10.33% ~ 27.59%),大小顺序为LA > AN > AP > SLA > LN:P > MN > MP > LDMC。(2)部分叶功能性状之间沿海拔梯度表现出显著的协同或权衡变化趋势,油松SLA与LDMC呈显著负相关(P < 0.05),与ANAP呈极显著负相关(P < 0.001)。(3)控制油松各叶性状变异的主要环境因子各不相同,油松LA、SLA及LN:P主要受到海拔高度和土壤全磷的影响,LDMC主要受到土壤氮磷比和土壤含水率的影响,MNAN主要受到土壤pH和土壤全磷影响,MP主要受到海拔和坡度的影响。(4)海拔与土壤因子两组变量只能解释油松叶功能性状6.28% ~ 41.10%的变异。  结论  研究区域内,油松叶片功能性状通过一定的性状变异和性状组合适应海拔梯度的变化,其中控制油松各叶性状变异的主要环境因子和程度各不相同。

     

  • 图  1  油松叶性状随海拔梯度的变化

    LA为叶面积;SLA为比叶面积;LDMC为叶干物质含量;MN为单位质量的氮含量;MP为单位质量的磷含量;AN为单位面积的氮含量;AP为单位面积的磷含量;LN:P为叶氮磷比;CV为变异系数。下同。LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; MN, nitrogen concentration per unit mass; MP, phosphorous concentration per unit mass; AN, nitrogen concentration per unit area; AP, phosphorous concentration per unit area; LN:P, leaf nitrogen to phosphorus ratio; CV, coefficient of variation. The same below.

    Figure  1.  Variations of leaf traits with altitude gradient for Pinus tabuliformis

    图  2  海拔、地形与土壤因子对油松叶性状的解释

    Figure  2.  Explanation of altitude (topography) and soil factors to leaf traits of Pinus tabuliformis

    表  1  油松叶性状间的相关系数矩阵

    Table  1.   Correlation matrix among leaf traits of Pinus tabuliformis

    LALDMCSLAMNANMPAP
    LDMC −0.231
    SLA 0.055 −0.410*
    MN −0.245 0.103 −0.257
    AN −0.171 0.324 −0.800 *** 0.775 ***
    MP 0.454* −0.078 0.221 −0.282 −0.324
    AP 0.093 0.391* −0.722 *** 0.181 0.576 ** 0.337
    LN:P −0.297 0.060 −0.358 0.803 *** 0.728 *** −0.648 *** −0.137
    注:***表示 P < 0.001,** 表示P < 0.01,*表示P < 0.05。Notes: *** means correlation is significant at P < 0.001 level, ** means correlation is significant at P < 0.01 level, * means correlation is significant at P < 0.05 level.
    下载: 导出CSV

    表  2  油松各叶功能性状主要影响因素通径系数

    Table  2.   Path coefficients of main influencing factors of leaf functional traits of Pinus tabuliformis

    叶性状
    Leaf trait
    影响因素
    Influencing factor
    相关系数
    Correlation coefficient
    直接通径系数
    Direct path coefficient
    间接通径系数总和
    Total indirect path coefficient
    LA/cm2 alt −0.429 −0.239 −0.190
    SWC −0.131 0.472 −0.602
    TP 0.608 0.427 0.183
    N∶P −0.462 −0.371 −0.089
    LDMC/(mg·g−1) alt 0.420 −0.006 0.427
    SWC 0.529 0.221 0.309
    N∶P 0.586 0.435 0.155
    SLA/(cm2·g−1) alt −0.503 −0.325 −0.175
    TP 0.221 0.250 0.220
    N∶P −0.407 −0.039 −0.371
    MN/(mg·g−1) pH 0.370 0.299 0.071
    SWC 0.053 −0.383 0.433
    TN −0.123 0.252 −0.372
    TP −0.453 −0.622 0.172
    AN/(mg·cm−2) alt 0.577 0.179 0.401
    pH 0.416 0.198 0.222
    TP −0.600 −0.404 −0.197
    N∶P 0.476 0.062 0.148
    MP/(mg·g−1) alt −0.549 −0.483 −0.067
    slo −0.584 −0.375 −0.205
    SWC −0.192 0.288 −0.478
    TP 0.406 0.042 0.368
    LN:P alt 0.480 0.547 −0.068
    SWC 0.098 −0.383 0.483
    TP −0.472 −0.302 −0.167
    注:alt为海拔;slo为坡度;SWC为土壤含水率;pH为土壤pH值;TN为土壤全氮含量;TP为土壤全磷含量;N:P为土壤氮磷比;直接通径系数,表示环境因子对油松叶性状的直接影响;间接通径系数,表示某一因子通过其他因子对油松叶性状的间接影响;数值大小表示影响程度;−表示负效应,无符号表示正效应。Notes: alt, altitude; slo, slope; SWC, soil water content; pH, soil pH; TN, soil total nitrogen content; TP, soil total phosphorus content; N:P, soil nitrogen to phosphorus ratio. Direct path coefficient and indirect path coefficient mean direct and indirect effects of environmental factors on P. tabulaeformis leaf traits, respectively. Numerical value indicates influencing degree. Number with or without − means negative or possitive effects.
    下载: 导出CSV
  • [1] 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19):6787−6796.

    He N P, Liu C C, Zhang J H, et al. Perspectives and challenges in plant traits: from organs to communities[J]. Acta Ecologica Sinica, 2018, 38(19): 6787−6796.
    [2] Hölscher D, Schmitt S, Kupfer K. Growth and leaf traits of four broad-leaved tree species along a hillside gradient[J]. European Journal of Forest Research, 2002, 121(5): 229−239. doi: 10.1046/j.1439-0337.2002.02031.x
    [3] Wright I J, Reich P B, Westoby M, et al. The world-wide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [4] 王文娟, 吕慧, 钟悦鸣, 等. 胡杨异形叶性状与其个体发育的关系[J]. 北京林业大学学报, 2019, 41(2):62−69.

    Wang W J, Lü H, Zhong Y M, et al. Relationship between heteromorphic leaf traits of Populus euphratica and its individual development[J]. Journal of Beijing Forestry University, 2019, 41(2): 62−69.
    [5] Graae B J, Frenne P D, Kolb A, et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients[J]. Oikos, 2012, 121(1): 3−19. doi: 10.1111/j.1600-0706.2011.19694.x
    [6] Midolo G, de Frenne P, Hölzel N, et al. Global patterns of intraspecific leaf trait responses to elevation[J]. Global Change Biology, 2019, 25(7): 2485−2498. doi: 10.1111/gcb.14646
    [7] Read Q D, Moorhead L C, Swenson N G, et al. Convergent effects of elevation on functional leaf traits within and among species[J]. Functional Ecology, 2014, 28(1): 37−45. doi: 10.1111/1365-2435.12162
    [8] Umaña M N, Swenson N G. Intraspecific variation in traits and tree growth along an elevational gradient in a subtropical forest[J]. Oecologia, 2019, 191(1): 153−164. doi: 10.1007/s00442-019-04453-6
    [9] 李宗杰, 田青, 宋玲玲. 甘肃省摩天岭北坡木本植物叶性状变异及关联[J]. 中国沙漠, 2018, 38(1):149−156. doi: 10.7522/j.issn.1000-694X.2016.00129

    Li Z J, Tian Q, Song L L. Variation and correlation of leaf traits in woody plants in the north-facing slope of Motialing, Gansu, China[J]. Journal of Desert Research, 2018, 38(1): 149−156. doi: 10.7522/j.issn.1000-694X.2016.00129
    [10] 徐化成, 孙肇凤, 郭广荣, 等. 油松天然林的地理分布和种源区的划分[J]. 林业科学, 1981, 17(3):258−270.

    Xu H C, Sun Z F, Guo G R, et al. Geographic distribution of Pinus tabulaeformis Carr. and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3): 258−270.
    [11] Messier J, Mcgill B, Lechowicz M. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x
    [12] 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736−749.

    Zhang K, Hou J H, He N P. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecoloica Sinica, 2017, 37(3): 736−749.
    [13] 欧晓岚, 刘艳红. 北京松山不同坡向和径级油松异龄叶功能性状特征[J]. 南京林业大学学报(自然科学版), 2017, 41(4):80−88.

    Ou X L, Liu Y H. Age, slope aspectsand diameter classes affect the leaf functional traits of Pinus tabulaeformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Sciences Editions), 2017, 41(4): 80−88.
    [14] Lajoie G, Vellend M. Characterizing the contribution of plasticity and genetic differentiation to community-level trait responses to environmental change[J]. Ecology and Evolution, 2018, 8(8): 3895−3907. doi: 10.1002/ece3.3947
    [15] Luo T, Luo J, Pan Y. Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau[J]. Oecologia, 2005, 142(2): 261−273. doi: 10.1007/s00442-004-1729-6
    [16] Poorter H, Niinemets U, Poorter L, et al. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis[J]. New Phytologist, 2009, 182(3): 565−588. doi: 10.1111/j.1469-8137.2009.02830.x
    [17] Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi: 10.1046/j.1469-8137.1999.00427.x
    [18] Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424: 901−908. doi: 10.1038/nature01843
    [19] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x
    [20] 陈晨, 刘丹辉, 吴键军, 等. 东灵山地区辽东栎叶性状与地形因子关系[J]. 生态学杂志, 2015, 34(8):2131−2139.

    Chen C, Liu D H, Wu J J, et al. Leaf traits of Quercus wutaishanica and their relationship with topographic factors in Mount Dongling[J]. Chinese Journal of Ecology, 2015, 34(8): 2131−2139.
    [21] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3):930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013

    Qi J, Ma K M, Zhang Y X. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations[J]. Acta Ecoloica Sinica, 2007, 27(3): 930−937. doi: 10.3321/j.issn:1000-0933.2007.03.013
    [22] Reich P B, Oleksyn J, Tilman G D. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [23] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology & Evolution, 2007, 22(11): 569−574.
    [24] 张小芳, 刘贤德, 敬文茂, 等. 祁连山不同海拔火绒草叶片生态化学计量特征及其与土壤养分的关系[J]. 应用生态学报, 2019, 30(12):4012−4020.

    Zhang X F, Liu X D, Jing W M, et al. Characteristics of Leontopodium leontopodioides leaf stochiometry with altitude and their relationship with soil nutrients in Qilian Mountains, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4012−4020.
    [25] Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems[M]. Berlin:Springer, 2003.
    [26] Güsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [27] Koerselman W, Arthur F M M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
    [28] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. The New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [29] Olsen J K, Bell L C. A glasshouse evaluation of ‘critical’ N and P concentrations and N:P ratios in various plant parts of six Eucalypt species[J]. Australian Journal of Botany, 1990, 38(3): 669−678.
    [30] 刘超, 武娴, 王襄平, 等. 内蒙古灌木叶性状关系及不同尺度的比较[J]. 北京林业大学学报, 2012, 34(6):23−29.

    Liu C, Wu X, Wang X P, et al. Relationships among shrub leaf traits in Inner Mongolia and comparison in different spatial scales[J]. Journal of Beijing Forestry University, 2012, 34(6): 23−29.
    [31] Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora[J]. Functional Ecology, 2001, 15(3): 351−359. doi: 10.1046/j.1365-2435.2001.00522.x
    [32] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12):2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001

    Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
    [33] Messier J, Mcgill B J, Enquist B J, et al. Trait variation and integration across scales: is the leaf economic spectrum present at local scales?[J]. Ecography, 2017, 40(6): 685−697. doi: 10.1111/ecog.02006
    [34] Richardson B A, Chaney L, Shaw N L, et al. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?[J]. Global Change Biology, 2017, 23(6): 2499−2508. doi: 10.1111/gcb.13532
    [35] Pescador D S, Francesco D B, Fernando V, et al. Plant trait variation along an altitudinal gradient in mediterranean high mountain grasslands: controlling the species turnover effect[J/OL]. Plos ONE, 2015, 10(3): e0118876 (2015−03−16)[2020−01−26]. https://doi.org/10.1371/journal.pone.0118876.
    [36] Liu C, Wang X, Wu X, et al. Relative effects of phylogeny, biological characters and environments on leaf traits in shrub biomes across central Inner Mongolia, China[J]. Journal of Plant Ecology, 2013, 6(3): 220−231. doi: 10.1093/jpe/rts028
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  586
  • HTML全文浏览量:  172
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2020-11-27
  • 网络出版日期:  2021-04-06
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回