高级检索

    轻木细胞壁超微结构与力学性能关系研究

    Relationship between cell wall ultrastructure and mechanical properties of balsa wood

    • 摘要:
        目的  研究轻木化学组成、纤维细胞壁分层结构和纤维素聚集态结构,探究其对力学性能的影响,为厘清轻木细胞壁超微结构与力学性能之间关系,提高其利用附加值奠定理论基础。
        方法  将轻木与我国常见阔叶木树种杨木进行对比研究,采用水解法分析两者的化学组成;用透射电子显微镜、共聚焦拉曼显微镜等表征纤维细胞壁分层结构、微区化学和纤维素聚集态结构特征。
        结果  轻木与杨木乙酰基质量分数分别为9.52%和5.61%。轻木纤维细胞壁S3层厚度占细胞壁总厚度的5.49%,比杨木的(3.86%)高。轻木纤维细胞次生壁中微纤丝角最大为30°,比杨木的(40°)小。轻木胞间层、S2层中微纤丝取向排列比杨木相应壁层更加规整。
        结论  与杨木相比,轻木木聚糖的乙酰化程度、细胞壁分层结构、纤维素聚集态结构均有明显差异。轻木木聚糖的乙酰化程度更高,纤维细胞壁S3层厚度占细胞壁总厚度的比例更高,S2 层中微纤丝角更小,胞间层和S2层中微纤丝排列更加规整。以上发现从化学结构和超微结构方面解释了轻木高强轻质的主要原因,为解译木材细胞壁化学组成和超微结构与力学性能关系以及轻木的高值化利用提供了重要的理论参考。

       

      Abstract:
        Objective  This study aims to investigate the chemical composition, cell wall ultrastructureand supramolecular structure of cellulose in balsa wood fibers, as well as reveal their influence on mechanical properties of balsa wood and demonstrate the relationship between ultrastructure and mechanical properties, to provide a theoretical basis for the high value applications of balsa wood.
        Method  Balsa wood and poplar wood were comparatively studied. Their chemical composition was analyzed by acid hydrolysis, and the cell wall structure was observed by transmission electron microscopy. Meanwhile, confocal Raman microscope was used to characterize the cell wall topochemistry and the supramolecular structure of cellulose.
        Result  The acetyl contents in balsa wood and poplar wood were 9.52% and 5.61%, respectively. The thickness of S3 layer of balsa wood fiber cell wall accounted for 5.49% of the total thickness of cell wall, which was higher than that of poplar wood (3.86%). The maximum microfibril angle in S2 layer of balsa wood fiber was 30°, smaller than that of poplar wood (40°). The orientation of cellulose microfibers in the cell lamella and S2 layer of balsa wood was more regular than that in the corresponding layers of poplar wood.
        Conclusion  The degree of xylan acetylation, cell wall ultrastructure and cellulose supramolecular structure of balsa wood were significantly different from that of poplar wood: the balsa wood exhibited the higher degree of xylan acetylation, the higher proportion of S3 layer in cell wall, the smaller microfibrils angle in S2 layer, and more orderly orientation of cellulose microfibrils in both cell lamella and S2 layer. This study not only explains the main reasons for the excellent mechanical properties of balsa wood with low density, but also provides significant theoretical reference for the cell wall topochemistry, the relationship between ultrastructure and mechanical properties and high value utilization of balsa wood.

       

    /

    返回文章
    返回