• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

高温诱导银灰杨花粉败育的细胞学机理研究

李智群, 孔博, 程雪桐, 李亮, 张平冬

李智群, 孔博, 程雪桐, 李亮, 张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究[J]. 北京林业大学学报, 2023, 45(5): 25-34. DOI: 10.12171/j.1000-1522.20210498
引用本文: 李智群, 孔博, 程雪桐, 李亮, 张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究[J]. 北京林业大学学报, 2023, 45(5): 25-34. DOI: 10.12171/j.1000-1522.20210498
Li Zhiqun, Kong Bo, Cheng Xuetong, Li Liang, Zhang Pingdong. Cytological mechanism of pollen abortion induced by high temperature in Populus canescens[J]. Journal of Beijing Forestry University, 2023, 45(5): 25-34. DOI: 10.12171/j.1000-1522.20210498
Citation: Li Zhiqun, Kong Bo, Cheng Xuetong, Li Liang, Zhang Pingdong. Cytological mechanism of pollen abortion induced by high temperature in Populus canescens[J]. Journal of Beijing Forestry University, 2023, 45(5): 25-34. DOI: 10.12171/j.1000-1522.20210498

高温诱导银灰杨花粉败育的细胞学机理研究

基金项目: 国家自然科学基金面上项目(31570646)
详细信息
    作者简介:

    李智群。主要研究方向:林木细胞遗传与细胞工程。Email:928641571@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    张平冬,教授,博士生导师。主要研究方向:林木遗传改良。Email:zhangpd@bjfu.edu.cn 地址:同上

  • 中图分类号: S792.11

Cytological mechanism of pollen abortion induced by high temperature in Populus canescens

  • 摘要:
      目的  研究高温处理对银灰杨小孢子发生的影响,揭示高温处理导致杨树花粉败育的细胞学机理,旨在完善高温处理诱导配子染色体加倍、选育林木三倍体的技术。
      方法  本研究以银灰杨为试验材料,利用38 ℃和41 ℃的高温,对不同减数分裂时期的银灰杨花粉母细胞进行3、6 h处理,研究处理温度、减数分裂时期以及持续处理时间对败育花粉比率的影响。在此基础上,通过比较未经高温处理和高温处理后银灰杨花粉母细胞减数分裂染色体行为、微管骨架动态变化以及减数后绒毡层细胞发育的差异,揭示高温处理诱导银灰杨花粉败育的细胞学机理。
      结果  (1)减数分裂时期、处理温度、持续处理时间以及减数分裂时期与处理温度、减数分裂时期与持续处理时间的交互作用均对败育花粉比率具有极显著的影响。41 ℃高温于中期Ⅰ持续处理3 h的败育花粉比率最高,为(25.11 ± 4.28)%。(2)与对照组相比,银灰杨雄花芽经高温处理后,花粉母细胞减数分裂微管骨架表现出不同程度的解聚,中期Ⅰ和中期Ⅱ的部分纺锤体微管缺失,致使后期Ⅰ和后期Ⅱ的同源染色体或姊妹染色单体分离异常,产生大量的落后染色体。这些落后染色体被遗弃在细胞质中,引起微核的产生,四分体时期形成多分体而导致花粉败育。(3)高温处理可导致银灰杨花药绒毡层退化延迟,但仍能正常开裂,释放出花粉粒,因此绒毡层延迟退化不是高温处理诱导银灰杨花粉败育的原因。
      结论  高温处理诱导银灰杨花粉母细胞中期Ⅰ和中期Ⅱ的部分纺锤体微管缺失,致使后期Ⅰ和后期Ⅱ产生大量的落后染色体,引起大量多分体的产生,是高温处理诱导银灰杨花粉败育的细胞学机理。
    Abstract:
      Objective  The effects of high temperature on microsporogenisis and cytological mechanism of pollen abortion induced by high temperature were conducted in P. canescens, aiming at improving the technology of forest triploid breeding though inducing gamete chromosme doubling by high temperature.
      Method  In this study, the effects of high temperature, meiotic stage and duration on percentage of aborted pollen were conducted after male flower buds being exposed to 38 ℃ for 3 or 6 h in P. canescens. Subsequently, the differences in chromosome behaviour, meiotic microtubule cytoskeleton and development of tapetum between untreated pollen mother cells (PMCs) and treated PMCs were studied to reveal the cytological mechanism of aborted pollen production induced by high temperature.
      Result  (1) Meiotic stages, temperature, duration, meiotic stage × temperature interactions and meiotic stage × duration interactions had significant effects on percentage of aborted pollen. The highest percentage of aborted pollen was (25.11 ± 4.28)% when PMCs were treated with 41 ℃ for 3 h at metaphase Ⅰ. (2) Compared with PMCs in the control group, meiotic microtubule cytoskeleton was depolymerized and some spindles were lost within the PMCs at metaphase Ⅰ and Ⅱ, leading to the abnormal chromosome segregation at anaphase Ⅰ and Ⅱ and forming a great number of lagging chromosomes. These lagging chromosomes were retained within cytoplasm, causing some micronuclei to form. Therefore, aborted pollen formed due to the formation of polyads at tetrad stage. (3) Although high temperature could also delay the degradation of the tapetum, the anthers normally dehisced and pollen grains were released. Thus, the delayed degradation of the tapetum was not responsible for the formation of aborted pollen.
      Conclusion  After male flower buds being treated by 38 ℃ for 3 or 6 h, some spindles are lost within the PMCs at metaphase Ⅰ and Ⅱ, leading to form a great number of lagging chromosomes and polyads, which is the cytological mechanism of aborted pollen formation induced by high temperature.
  • 图  1   银灰杨高温处理组(a)和对照组(b)的败育花粉

    黑色箭头指向的为败育花粉。The black arrow shows aborted pollen.

    Figure  1.   Aborted pollen in the treatment (a) and control group (b) of P. canescens

    图  2   银灰杨花粉母细胞对照组和38 ℃高温处理组的染色体行为

    a. 对照组后期Ⅰ;b. 对照组后期Ⅱ;c. 对照组的四分体;d. 38 ℃高温持续处理3 h后期Ⅰ的落后染色体;e. 38 ℃高温持续处理3 h后期Ⅱ的落后染色体;f. 38 ℃高温持续处理3 h后四分体时期产生的多分体;g. 38 ℃高温持续处理6 h后期Ⅰ的落后染色体;h. 38 ℃高温持续处理6 h后期Ⅱ的落后染色体;i. 38 ℃高温持续处理6 h后四分体时期产生的多分体。黑色箭头指向的为落后染色体。标尺为10.0 μm。a, anaphase Ⅰ in control group; b, lagging chromosomes at anaphase Ⅱ in control group; c, normal tetrad in control group; d, lagging chromosomes in anaphase Ⅰ derived from the treatment under 38 ℃ for 3 h; e, lagging chromosomes in anaphase Ⅱ derived from the treatment under 38 ℃ for 3 h; f, polyad derived from the treatment under 38 ℃ for 3 h; g, lagging chromosomes in anaphase Ⅰ derived from the treatment under 38 ℃ for 6 h; h, lagging chromosomes in anaphase Ⅱ derived from the treatment under 38 ℃ for 6 h; I, polyad derived from the treatment under 38 ℃ for 6 h. The black arrow shows the lagging chromosomes. Bar = 10.0 μm.

    Figure  2.   Meiotic chromosome behaviours of PMCs in the control group and the treated groups under 38 ℃ high temperature in P. canescens

    图  3   银灰杨花粉母细胞对照组38 ℃高温处理组的微管骨架

    a. 对照组中期Ⅰ;b. 对照组后期Ⅰ;c. 对照组中期Ⅱ;d. 对照组后期Ⅱ;e. 对照组末期Ⅱ;f. 处理组(38 ℃高温处理3 h)的中期Ⅰ;g. 处理组(38 ℃高温处理3 h)的后期Ⅰ;h. 处理组(38 ℃高温处理3 h)的中期Ⅱ;i. 处理组(38 ℃高温处理3 h)的后期Ⅱ;j. 处理组(38 ℃高温处理3 h)的末期Ⅱ;k. 处理组(38 ℃高温处理6 h)中期Ⅰ;l. 处理组(38 ℃高温处理6 h)的后期Ⅰ;m. 处理组(38 ℃高温处理6 h)的中期Ⅱ;n. 处理组(38 ℃高温处理6 h)的后期Ⅱ;o. 处理组(38℃高温处理6 h)的末期Ⅱ。标尺为10.0 μm。a, metaphase Ⅰ in the control group; b, anaphase Ⅰ in the control group; c, metaphase Ⅱ in the control group; d, anaphase Ⅱ in the control group; e, telophase Ⅱ in the control group; f, metaphase Ⅰ in the treatment group under 38 ℃ for 3 h; g, anaphase Ⅰ in the treatment group under 38 ℃ for 3 h; h, metaphase Ⅱ in the treatment group under 38 ℃ for 3 h; i, anahase Ⅱ in the treatment group under 38 ℃ for 3 h; j, telophase Ⅱ in the treatment group under 38 ℃ for 3 h; k, metaphase Ⅰ in the treatment group under 38 ℃ for 6 h; l, anaphase Ⅰ in the treatment group under 38 ℃ for 6 h; m, metahase Ⅱ in the treatment group under 38 ℃ for 6 h; n, anahase Ⅱ in the treatment group under 38 ℃ for 6 h; o, telophase Ⅱ in the treatment group under 38 ℃ for 6 h. Scalebar = 10.0 μm.

    Figure  3.   Meiotic microtubular cytoskeletons of PMCs in the control group and the treated groups under 38 ℃ in P. canescens

    图  4   银灰杨对照组和38 ℃高温处理组的花药绒毡层发育进程

    a. 对照组四分体时期;b. 对照组四分体形成后2 d;c. 对照组四分体形成后4 d;d. 对照组四分体形成后6 d;e. 对照组四分体形成后8 d;f. 38 ℃的高温持续处理3 h后四分体时期;g. 38 ℃的高温持续处理3 h,四分体形成后2 d;h. 38 ℃的高温持续处理3 h,四分体形成后4 d;i. 38 ℃的高温持续处理3 h四分体形成后6 d; j. 38 ℃的高温持续处理3 h,四分体形成后8 d;k. 38 ℃的高温持续处理6 h后四分体时期;l. 38 ℃的高温持续处理6 h,四分体形成后2 d; m. 38 ℃的高温持续处理6 h,四分体形成后4 d;n. 38 ℃的高温持续处理6 h,四分体形成后6 d; o. 38 ℃的高温持续处理6 h,四分体形成后8 d。黑色箭头指向的为绒毡层。标尺为5.0 μm。a, tapetum of anthers from the control group at the tetrad stage. b, tapetum of anthers from the control group 2 d after the tetrad stage. c, tapetum of anthers from the control group 4 d after the tetrad stage. d, tapetum of anthers from the control group 6 d after the tetrad stage. e, tapetum of anthers from the control group 8 d after the tetrad stage. f, tapetum of anthers in the treatment under 38 ℃ for 3 h at the tetrad stage. g, tapetum of anthers in the treatment under 38 ℃ for 3 h, 2 d after the tetrad stage. h, tapetum of anthers in the treatment under 38 ℃ for 3 h, 4 d after the tetrad stage. i, tapetum of anthers in the treatment under 38 ℃ for 3 h, 6 d after the tetrad stage. j, tapetum of anthers in the treatment under 38 ℃ for 3 h, 8 d after the tetrad stage. k, tapetum of anthers in the treatment under 38 ℃ for 6 h at the tetrad stage. l, tapetum of anthers in the treatment under 38 ℃ for 6 h, 2 d after the tetrad stage. m, tapetum of anthers in the treatment under 38 ℃ for 6 h, 4 d after the tetrad stage. n, tapetum of anthers in the treatment under 38 ℃ for 6 h, 6 d after the tetrad stage. o, tapetum of anthers in the treatment under 38 ℃ for 6 h, 8 d after the tetrad stage. The black arrow points to the tapetum. Scale bar = 5.0 μm.

    Figure  4.   Tapetum development process of anthers in the control group and the treated groups under 38 ℃ high temperature in P. canescens

    表  1   不同高温处理组合的败育花粉比率

    Table  1   Percentage of aborted pollen derived from different high temperature treatment combinations of P. canescens

    减数分裂时期
    Meiotic stage
    处理温度
    Treating
    temperature/℃
    持续处理时间
    Continuous treating time/h
    败育花粉比率
    Percentage of
    aborted pollen/%
    细线期
    Leptotene
    38 3 9.45 ± 0.92
    6 17.15 ± 2.56
    41 3 11.29 ± 1.77
    6 17.92 ± 2.55
    偶线期
    Zygotene
    38 3 12.78 ± 5.06
    6 22.45 ± 2.21
    41 3 17.39 ± 5.65
    6 20.37 ± 0.83
    粗线期
    Pachytene
    38 3 15.72 ± 2.02
    6 15.35 ± 4.33
    41 3 18.61 ± 5.20
    6 16.16 ± 1.35
    双线期
    Diplotene
    38 3 19.90 ± 3.03
    6 19.33 ± 0.96
    41 3 20.97 ± 4.10
    6 20.93 ± 1.70
    终变期
    Diakinesis
    38 3 14.17 ± 1.80
    6 13.83 ± 1.73
    41 3 16.95 ± 1.82
    6 20.62 ± 3.49
    中期Ⅰ
    Metaphase Ⅰ
    38 3 10.82 ± 3.41
    6 13.76 ± 2.06
    41 3 25.11 ± 4.28
    6 24.13 ± 4.05
    对照 Control 7.58 ± 1.32
    注:对照组为不进行高温处理的雄花芽。下同。Notes: the control group consists of male flower buds that are not subjected to high temperature treatment. The same below.
    下载: 导出CSV

    表  2   38 ℃处理3 h与6 h后出现落后染色体的花粉母细胞比率

    Table  2   Percentage of lagging chromosomes treated under38 ℃ for 3 and 6 h

    持续处理时间
    Continuous treating time/h
    落后染色体的花粉母细胞比率
    Percentage of PMCs with lagging chromosome/%
    后期Ⅰ Anaphase Ⅰ后期Ⅱ Anaphase Ⅱ
    340.67 ± 3.06 b33.33 ± 8.00 b
    655.33 ± 4.16 b48.67 ± 3.06 b
    对照 Control22.67 ± 4.16 a13.33 ± 5.03 a
    注:不同小写字母表示在0.05水平上显著。Note: different lowercase letters represent significance at 0.05 level.
    下载: 导出CSV
  • [1] 耿喜宁, 任勇谕, 韩志强, 等. 高温诱导大孢子染色体加倍选育毛白杨杂种三倍体[J]. 北京林业大学学报, 2018, 40(11): 12−18. doi: 10.13332/j.1000-1522.20180215

    Geng X N, Ren Y Y, Han Z Q, et al. Production of hybrid triploids via inducing chromosome doubling of megaspore with high temperature treatment in Leuce poplar[J]. Journal of Beijing Forestry University, 2018, 40(11): 12−18. doi: 10.13332/j.1000-1522.20180215

    [2] 康宁, 白凤莹, 张平冬, 等. 高温诱导胚囊染色体加倍获得毛白杨杂种三倍体[J]. 北京林业大学学报, 2015, 37(2): 79−86. doi: 10.13332/j.cnki.jbfu.2015.02.021

    Kang N, Bai F Y, Zhang P D, et al. Inducing chromosome doubling of embryo sac in Populus tomentosa with high temperature exposure for hybrid triploids[J]. Journal of Beijing Forestry University, 2015, 37(2): 79−86. doi: 10.13332/j.cnki.jbfu.2015.02.021

    [3] 王君. 青杨派树种多倍体诱导技术研究[D]. 北京: 北京林业大学, 2009.

    Wang J. Techniques of polyploid induction in Populus spp. (Section tacamahaca)[D]. Beijing: Beijing Forestry University, 2009.

    [4] 李云, 朱之悌, 田砚亭, 等. 极端温度处理白杨雌花芽培育三倍体植株的研究[J]. 北京林业大学学报, 2000, 22(5): 7−12. doi: 10.3321/j.issn:1000-1522.2000.05.002

    Li Y, Zhu Z T, Tian Y T, et al. Obtaining triploids by high and low temperature treating female flower buds of white poplar[J]. Journal of Beijing Forestry University, 2000, 22(5): 7−12. doi: 10.3321/j.issn:1000-1522.2000.05.002

    [5]

    Li Y, Wang Y, Wang P Q, et al. Induction of unreduced megaspores in Eucommia ulmoides by high temperature treatment during megasporogenesis[J]. Euphytica, 2016, 212(3): 515−524. doi: 10.1007/s10681-016-1781-4

    [6] 杨珺. 桉树生殖生物学基础与染色体加倍技术研究[D]. 北京: 北京林业大学, 2015.

    Yang J. Reproductive biology and techniques of chromosome doubling in Eucalyptus[D]. Beijing: Beijing Forestry University, 2015.

    [7] 康向阳, 朱之悌, 张志毅. 高温诱导白杨2n花粉有效处理时期的研究[J]. 北京林业大学学报, 2000, 22(3): 1−4. doi: 10.3321/j.issn:1000-1522.2000.03.001

    Kang X Y, Zhu Z T, Zhang Z Y. Suitable period of high temperature treatment for 2n pollen of Populus tomentosa × P. bolleana[J]. Journal of Beijing Forestry University, 2000, 22(3): 1−4. doi: 10.3321/j.issn:1000-1522.2000.03.001

    [8] 鲁敏. 响叶杨三倍体和四倍体诱导技术研究[D]. 北京: 北京林业大学, 2013.

    Lu M. Techniques of triploid and teraploid induction in Populus adenopoda Maxim.[D]. Beijing: Beijing Forestry University, 2013.

    [9] 张磊, 王君, 索玉静, 等. 高温诱导银白杨花粉染色体加倍研究[J]. 核农学报, 2010, 24(6): 1158−1165. doi: 10.11869/hnxb.2010.06.1158

    Zhang L, Wang J, Suo Y J, et al. Pollen chromosome doubling under high temperature in Populus alba L.[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(6): 1158−1165. doi: 10.11869/hnxb.2010.06.1158

    [10] 田梦迪, 李燕杰, 张平冬, 等. 高温诱导银灰杨花粉染色体加倍创制杂种三倍体[J]. 林业科学, 2018, 54(3): 39−47.

    Tian M D, Li Y J, Zhang P D, et al. Pollen chromosome doubling induced by high temperature exposure to produce hybrid triploids in Populus canescens[J]. Scientia Silvae Sinicae, 2018, 54(3): 39−47.

    [11]

    Guan J Z, Wang J J, Cheng Z H, et al. Cytomixis and meiotic abnormalities during microsporogenesis are responsible for male sterility and chromosome variations in Houttuynia cordata[J]. Genetics and Molecular Research, 2012, 11: 121−130. doi: 10.4238/2012.January.17.2

    [12]

    Liu L W, Huang H, Gong Y Q, et al. Cytological and ultra-structural study on microsporogenesis of cytoplasmic male sterility in Raphanus sativus[J]. Journal of Integrative Plant Biology, 2009, 64(9): 716−722.

    [13]

    Xu C G, Liu Z T, Zhang L P, et al. Organization of actin cytoskeleton during meiosisⅠin a wheat thermo-sensitive genic male sterile line[J]. Protoplasma, 2013, 250: 415−422. doi: 10.1007/s00709-012-0386-6

    [14] 张文超, 曹媛, 常童洁, 等. 毛白杨花粉败育过程中胼胝质的异常分布变化[J]. 东北林业大学学报, 2013, 41(1): 68−71. doi: 10.3969/j.issn.1000-5382.2013.01.017

    Zhang W C, Cao Y, Chang T J, et al. Abnormal changes of callose distribution during pollen abortion in Populus tomentosa Carr.[J]. Journal of Northeast Forestry University, 2013, 41(1): 68−71. doi: 10.3969/j.issn.1000-5382.2013.01.017

    [15] 李燕杰. 高温诱导银灰杨产生2n花粉的细胞及分子机制[D]. 北京: 北京林业大学, 2017.

    Li Y J. Cytological and molecular mechanism of 2n pollen production induced by high temperature in Populus canescens[D]. Beijing: Beijing Forestry University, 2017.

    [16] 张媛. ‘抱头毛白杨’花粉败育的细胞学机理研究[D]. 北京: 北京林业大学, 2019.

    Zhang Y. Cytological mechanism of pollen abortion in Populus tomentosa ‘baotoubai’[D]. Beijing: Beijing Forestry University, 2019.

    [17]

    Koti S, Reddy K R, Reddy V R, et al. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths[J]. Journal Experiment Botany, 2005, 56(412): 725−736. doi: 10.1093/jxb/eri044

    [18]

    Sato S, Kamiyama M, Iwata N, et al. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development[J]. Annals of Botany, 2006, 97(5): 731−738. doi: 10.1093/aob/mcl037

    [19]

    Porch T G, Jahn M. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris[J]. Plant Cell & Environment, 2001, 24(7): 723−731.

    [20]

    Peet M M, Sato S, Gardner R G. Comparing heat stress effects on male-fertile and male-sterile tomatoes[J]. Plant Cell & Environment, 1998, 21: 225−231.

    [21]

    Young L W, Wilen R W, Bonham-Smith P C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production[J]. Journal of Experiment Botany, 2004, 396: 485−495.

    [22]

    Cross R H, McKay S A B, McHughen A G, et al. Heat-stress effects on reproduction and seed set in Linum usitatissimum L. (flax)[J]. Plant Cell & Environment, 2003, 26(7): 1013−1020.

    [23]

    Johnsen Ø, Dæhlen O G, Østreng G, et al. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies[J]. New Phytologist, 2010, 168: 589−596.

    [24]

    Johnsen Ø, Fossdal C G, Nagy N, et al. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation[J]. Plant Cell & Environment, 2010, 28(9): 1090−1102.

    [25]

    Lacey E P, Herr D. Parental effects in Plantago lanceolata L. (Ⅲ): measuring parental temperature effects in the field[J]. Evolution, 2010, 54(4): 1207−1217.

    [26]

    Erickson A N, Markhart A H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature[J]. Plant Cell & Environment, 2002, 25: 123−130.

    [27]

    Cao Y Y, Duan H, Yang L N, et al. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134−2142. doi: 10.1016/S1875-2780(09)60022-5

    [28]

    Bomblies K, Higgins J D, Yant L. Meiosis evolves: adaptation to external and internal environments[J]. New Phytologist, 2015, 208: 306−323. doi: 10.1111/nph.13499

    [29]

    Wang J, Kang X Y. Distribution of microtubular cytoskeletons and organelle nucleoids during microsporogenesis in a 2n pollen producer of hybrid Populus[J]. Silvae Genetica, 2009, 58: 220−226. doi: 10.1515/sg-2009-0028

    [30] 李燕杰, 田梦迪, 刘燕, 等. 银灰杨花粉母细胞减数分裂与微管骨架变化[J]. 北京林业大学学报, 2017, 39(5): 9−16. doi: 10.13332/j.1000-1522.20160417

    Li Y J, Tian M D, Liu Y, et al. Meiosis and organization of microtubule of pollen mother cells in Populus canescens[J]. Journal of Beijing Forestry University, 2017, 39(5): 9−16. doi: 10.13332/j.1000-1522.20160417

    [31]

    Scott R J, Spielman M, Dickinson H G. Stamen structure and function[J]. The Plant Cell, 2004, 16: 46−60. doi: 10.1105/tpc.017012

    [32] 张虹, 梁婉琪, 张大兵. 花药绒毡层细胞程序性死亡研究进展[J]. 上海交通大学学报(农业科学版), 2008, 26(1): 86−90.

    Zhang H, Liang W Q, Zhang D B. Research progress on tapetum programmed cell death[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2008, 26(1): 86−90.

    [33]

    Wu H M, Cheung A Y. Programmed cell death in plant reproduction[J]. Plant Molecular Biology, 2000, 44: 267−281.

    [34]

    Sanders P M, Lee P, Biesgen C, et al. The arabidopsis DELAYED DEHISCENCE 1 gene encodes an enzyme in the jasmonic acid synthesis pathway[J]. The Plant Cell, 2000, 12: 1041−1061. doi: 10.1105/tpc.12.7.1041

    [35]

    Jin W, Horner H T, Palmer R G. Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr.][J]. Sex Plant Reproductive, 1997, 10: 13−21. doi: 10.1007/s004970050062

    [36]

    Worrall D, Hird D L, Hodge R, et al. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco[J]. The Plant Cell, 1992, 4: 759−771.

    [37] 张鹏飞. 小麦雄性不育系绒毡层异常代谢与小孢子败育的关系[J]. 中国农业科学, 2014, 47(9): 1670−1680. doi: 10.3864/j.issn.0578-1752.2014.09.002

    Zhang P F. Relationship between microspore abortion of CMS lines associated with nutrient metabolism disorder in tapetal of anther in wheat (Triticum aestivum L.)[J]. Scientia Agricultura Sinica, 2014, 47(9): 1670−1680. doi: 10.3864/j.issn.0578-1752.2014.09.002

    [38]

    Li B, Chen X P, Wu Y R, et al. Gene characterization and molecular pathway analysis of reverse thermosensitive genic male sterility in eggplant (Solanum melongena L.)[J/OL]. Horticulture Research, 2019, 6(1): 16. DOI: 10.1038/s41438-019-0201-z.

    [39]

    Endo M, Tsuchiya T, Hamada K, et al. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development[J]. Plant & Cell Physiology, 2009, 11: 1911−1922.

    [40]

    Abiko M, Akibayashi K, Sakata T, et al. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition[J]. Sexual Plant Reproductive, 2005, 18(2): 91−100. doi: 10.1007/s00497-005-0004-2

    [41]

    Oshino T, Abiko M, Saito R, et al. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants[J]. Mollecular Genetics and Genomics, 2007, 278(1): 31−42. doi: 10.1007/s00438-007-0229-x

    [42]

    Papini A, Mosti S, Brighigna L. Programmed-cell-death events during tapetum development of angiosperms[J]. Protoplasma, 1999, 207: 213−221. doi: 10.1007/BF01283002

    [43]

    Varnier A L, Mazeyrat-Gourbeyre F, Sangwan R S, et al. Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation[J]. Journal of Structural Biology, 2005, 152(2): 118−128. doi: 10.1016/j.jsb.2005.07.011

  • 期刊类型引用(11)

    1. 杨勇,陈林,庞丹波,李学斌,刘瑞亮. 不同凋落物处理对贺兰山三种林分土壤呼吸的影响. 西南农业学报. 2023(03): 593-601 . 百度学术
    2. 陈炎根,胡艳静,黄莎,刘波,吴继来,王懿祥. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响. 浙江农林大学学报. 2023(05): 1054-1062 . 百度学术
    3. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 . 百度学术
    4. 刘洪柳,王泽鑫,郭晋平,张芸香. 林分密度对华北落叶松天然次生林林下植被和土壤呼吸的影响. 广西林业科学. 2022(02): 190-196 . 百度学术
    5. 李素新,覃志杰,刘泰瑞,郭晋平. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响. 水土保持学报. 2020(01): 268-274 . 百度学术
    6. 段北星,蔡体久,宋浩,肖瑞晗. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响. 生态学报. 2020(04): 1357-1366 . 百度学术
    7. 巫志龙,周成军,周新年,刘富万,朱奇雄,黄金湧,陈文. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异. 林业科学. 2019(06): 142-149 . 百度学术
    8. 段北星,满秀玲,宋浩,刘家霖. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征. 北京林业大学学报. 2018(02): 40-50 . 本站查看
    9. 李良,夏富才,孙越,张骁. 阔叶红松林下早春植物生物量分配. 北京林业大学学报. 2017(01): 34-42 . 本站查看
    10. 邵英男,田松岩,刘延坤,李云红,陈瑶,孙志虎. 密度调控对长白落叶松人工林土壤呼吸的影响. 北京林业大学学报. 2017(06): 51-59 . 本站查看
    11. 赵佳琪,牟长城,吴彬,周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响. 北京林业大学学报. 2017(10): 13-23 . 本站查看

    其他类型引用(18)

图(4)  /  表(2)
计量
  • 文章访问数:  736
  • HTML全文浏览量:  155
  • PDF下载量:  84
  • 被引次数: 29
出版历程
  • 收稿日期:  2021-11-27
  • 修回日期:  2021-12-13
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-02-17
  • 发布日期:  2023-05-24

目录

    /

    返回文章
    返回