A simple method for estimating the amount of leaves of Acer pseudosieboldianum
-
摘要:目的
目前关于估计单株树木叶片数量方法的研究较少,本研究结合嵌套式回归的原理,介绍一种通过目测确定单株树木叶片数量的方法,为叶生物量和叶面积的研究奠定理论基础,为估计群落尺度的叶生物量和叶面积指数提供更加方便快捷的手段。
方法本方法的原理是:(1)将枝条划分为枝轴,枝轴为任意级别枝条去掉分枝后的主轴;(2)确定单个枝轴上的叶片数量;(3)通过枝条的分枝关系建立枝条容量−枝轴数量查找表,确定枝条和枝轴的数量关系;(4)将枝条所包含的所有枝轴上的叶片累加得到枝条的叶片数量;(5)计算单株树木的叶片数量。采用该方法对长白山北坡假色槭的单株叶片数量进行估计。
结果在所测量的25株树中,容量为1至容量为7的枝条上的平均枝轴数分别为1.0、3.0、8.9、32.9、105.0、323.0、1 015.3,枝轴上的平均叶片数为2.9片,通过计算25株样树的单株叶片数量并绘制散点图,散点大致呈指数型分布,符合树木的一般生长规律。建立了预测假色槭叶片数量的最适方程,即y = 261.60DBH1.65,根据检验结果,使用该方法预测的假色槭叶片数量偏大15.58%。
结论本方法正确、可靠,具有工作量小、效率高的特点,整个估计过程中无破坏性取样。若结合单片叶的面积、干质量等指标,可以使群落尺度的叶生物量和叶面积指数的计算更加快捷。
Abstract:ObjectiveThere is currently limited research on methods for estimating the number of leaves on individual tree. Combined with the principle of nested regression, this study introduced a method to visually estimate the amount of individual-tree leaves. The aim of this study was to provide the theoretical basis for the study of leaf biomass and leaf area, and to provide a more convenient and efficient method for estimating the leaf biomass and leaf area index in the community.
MethodThe principle of this method was : (1) dividing the branches into branch axes, which are the main axes of any level of branch after removing branches; (2) determining the amount of leaves on individual main branch; (3) establishing a lookup table for securing the total amount of main branches of the individual branch based on the hierarchy structure; (4) obtaining the total amount of leaves by summing the numbers of all main branches; (5) calculating the leaf amount of individual trees, and estimating the number of leaves on individual trees on the north of Changbai Mountain with this method.
ResultAmong the 44 trees measured, the number of main branches with branch capacity of 1 to 7 was: 1.0, 3.0, 8.9, 32.9, 105.0, 323.0 and 1015.3, the average number of leaves on the main branch was 2.9. The minimum DBH of the measured trees was 5.4 cm, and the number of leaves was 3 038; the maximum DBH was 28.3 cm, and the number of leaves was 62 783. Calculating the number of leaves on 25 individual trees and drawing a scatter plot, the points are roughly distributed exponentially, conform to the growth pattern of trees. The optimal equation for predicting the number of leaves was y = 261.60 DBH1.65, according to the test, the number of leaves predicted by this method was 15.58% larger.
ConclusionThis method is correct, reliable, and has the characteristics of low workload and high efficiency. There is no destructive sampling throughout the entire estimation process. If combined with indicators such as single leaf area and dry mass, the calculation of community scale leaf biomass and leaf area index can be faster.
-
-
图 1 枝条容量分解图
A、B、C、D分别代表容量为4、3、2、1的枝条;a、b、c、d、e分别代表枝条A上容量为2、2、2、3、3的次级枝条。A, B, C, and D represent branches with capacities of 4, 3, 2 and 1, respectively; a, b, c, d and e represent secondary branches with capacities of 2, 2, 2, 3 and 3 on branch A, respectively.
Figure 1. A diagram showing branch capacity
表 1 枝条容量−枝轴数量计算表
Table 1 An example for calculating branch capacity and the number of main branches
表 2 各方程的拟合结果
Table 2 Fitting results of various equations
方程 Equation a b R2 y=axb 261.60 1.65 0.982 4 y=ax+b 2 526.35 −12 880.54 0.980 4 y=aebx 4 960.00 0.09 0.914 9 注:x为胸径(cm),y为假色槭叶片数量,a、b为参数。Notes: x represents DBH (cm), y represents the amount of leaves of Acer pseudosieboldianum, a and b are parameters. -
[1] Mark W, Daniel S F, Angela T M, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33: 125−159. doi: 10.1146/annurev.ecolsys.33.010802.150452
[2] Huang Y, Lechowicz M J, Price C A, et al. The underlying basis for the trade-off between leaf size and leafing intensity[J]. Functional Ecology, 2016, 30(2): 199−205. doi: 10.1111/1365-2435.12491
[3] Yan E, Wang X, Chang S X, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6): 609−617. doi: 10.1093/treephys/tpt042
[4] Watson D J. Comparative physiological studies on the growth of field crops(I): variation in net assimilation rate and leaf area between species and varieties, and within and between years[J]. Annals of Botany, 1947, 11(1): 41−76. doi: 10.1093/oxfordjournals.aob.a083148
[5] 李轩然, 刘琪璟, 蔡哲,等. 千烟洲针叶林的比叶面积及叶面积指数[J]. 植物生态学报, 2007, 31(1): 93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012 Li X R, Liu Q J, Cai Z, et al. Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China[J]. Chinese Journal of Plant Ecology, 2007, 31(1): 93−101. doi: 10.3321/j.issn:1005-264X.2007.01.012
[6] 王希群, 马履一, 贾忠奎, 等. 叶面积指数的研究和应用进展[J]. 生态学杂志, 2005, 24(5): 537−541. doi: 10.3321/j.issn:1000-4890.2005.05.015 Wang X Q, Ma L Y, Jia Z K, et al. Research and application advances in leaf area index[J]. Chinese Journal of Ecology, 2005, 24(5): 537−541. doi: 10.3321/j.issn:1000-4890.2005.05.015
[7] Jonckheere I, Fleck S, Nackaerts K, et al. Review of methods for in situ leaf area index determination (Part 1): theories, sensors and hemispherical photography[J]. Agricultural and Forest Meteorology, 2004, 121: 19−35. doi: 10.1016/j.agrformet.2003.08.027
[8] 刘琪璟. 嵌套式回归建立树木生物量模型[J]. 植物生态学报, 2009, 33(2): 331−337. doi: 10.3773/j.issn.1005-264x.2009.02.010 Liu Q J. Nested regression for establishing tree biomass equations[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 331−337. doi: 10.3773/j.issn.1005-264x.2009.02.010
[9] 贾全全, 罗春旺, 刘琪璟, 等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 87−92. Jia Q Q, Luo C W, Liu Q J, et al. Biomass allocation in relation to stand density in Pinus tabuliformis plantation[J]. Journal of Nanjing Foresty University (Natural Sciences Edition), 2015, 39(6): 87−92.
[10] 孙震, 刘琪璟, 徐振招, 等. 长白山针阔混交林紫椴的泌蜜量[J]. 应用生态学报, 2020, 31(8): 2500−2506. Sun Z, Liu Q J, Xu Z Z, et al. Nectar productivity of Tilia amurensis in a broadleaved-conifer mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2500−2506.
[11] 董舒. 天童常绿阔叶林6个优势种叶凋落量及养分特征研究[D]. 上海: 华东师范大学, 2016. Dong S. Study on Leaf litterfall production and nutrient characteristics of six dominant species in an evergreen broad-leaved forset in Tiantong [D]. Shanghai: East China Normal University, 2016.
[12] 原作强, 李步杭, 白雪娇, 等. 长白山阔叶红松林凋落物组成及其季节动态[J]. 应用生态学报, 2010, 21(9): 2171−2178. doi: 10.13287/j.1001-9332.2010.0313 Yuan Z Q, Li B H, Bai X J, et al. Composition and seasonal dynamics of litterfalls in broad-leaved Korean ine ( Pinus koraiensis) mixed forest in Changbai Moubtains Northeast China[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2171−2178. doi: 10.13287/j.1001-9332.2010.0313
[13] 朱保坤. 长白山阔叶红松林凋落物的动态变化[D]. 长春: 东北师范大学, 2019. Zhu B K. The dynamic of litterfalls in broad-leaved Korean pine mixed forest in Changbai Mountain[D]. Changchun: Northeast Normal University, 2019.
-
期刊类型引用(11)
1. 赵熙来,周正,葛锐,罗伟豪,马旭彤,蒋慧,苏华维. 残次香梨与乳酸菌组合对四翅滨藜青贮的影响. 中国饲料. 2024(17): 155-161 . 百度学术
2. 张衡锋,杨绮,韦庆翠,张焕朝. 盐胁迫对10个品种紫薇的影响及其耐盐性综合评价. 东北林业大学学报. 2023(09): 34-40 . 百度学术
3. 李雨欣,罗秀丽,张婷婷,康宇乾,王鹏,江行玉,周扬. 盐胁迫下海马齿生理指标变化及相关基因表达分析. 农业生物技术学报. 2022(07): 1279-1289 . 百度学术
4. 刘鹤莹,张嫚,翟中葳,杨鹏,支苏丽,沈仕洲,张克强. 大薸对奶厅废水主要污染物的去除效果研究. 农业环境科学学报. 2022(11): 2525-2538 . 百度学术
5. 王涛,蒙仲举,张佳鹏,雷虹娟,张格. NaCl胁迫对紫穗槐幼苗生长及生理特性的影响. 西北林学院学报. 2021(01): 25-30 . 百度学术
6. 刘学良,姚俊修,刘翠兰,李善文,任飞,李庆华,吴海涛,翟红莲,吴德军,邢世岩,高红萍. 7个接骨木无性系苗木对盐胁迫的生理响应与评价. 中南林业科技大学学报. 2021(01): 37-44+79 . 百度学术
7. 鲁俊倩,武舒,钟姗辰,张伟溪,苏晓华,张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析. 北京林业大学学报. 2021(02): 46-53 . 本站查看
8. 丁丁,王红宝,郑伶杰,左永梅,韩民利,吴新海,郭艳超. 不同品种茶菊对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2021(03): 692-702 . 百度学术
9. 赵佳伟,李清亚,路斌,李艳,朱玉菲,栗浩,路丙社. 不同品种北美豆梨对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2019(01): 23-31 . 百度学术
10. 邹晓君,列志旸,薛立. NaCl胁迫对4种园林植物养分含量和贮量的影响. 华南农业大学学报. 2018(06): 77-84 . 百度学术
11. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
其他类型引用(5)