• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析

鲁俊倩, 武舒, 钟姗辰, 张伟溪, 苏晓华, 张冰玉

鲁俊倩, 武舒, 钟姗辰, 张伟溪, 苏晓华, 张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析[J]. 北京林业大学学报, 2021, 43(2): 46-53. DOI: 10.12171/j.1000-1522.20200070
引用本文: 鲁俊倩, 武舒, 钟姗辰, 张伟溪, 苏晓华, 张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析[J]. 北京林业大学学报, 2021, 43(2): 46-53. DOI: 10.12171/j.1000-1522.20200070
Lu Junqian, Wu Shu, Zhong Shanchen, Zhang Weixi, Su Xiaohua, Zhang Bingyu. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46-53. DOI: 10.12171/j.1000-1522.20200070
Citation: Lu Junqian, Wu Shu, Zhong Shanchen, Zhang Weixi, Su Xiaohua, Zhang Bingyu. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46-53. DOI: 10.12171/j.1000-1522.20200070

‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析

基金项目: 国家自然基金项目(31770710),转基因生物新品种培育重大课题(2018ZX08020002)
详细信息
    作者简介:

    鲁俊倩。主要研究方向:林木遗传育种。Email:lujq115@163.com 地址:100091北京市海淀区青龙桥街道中国林业科学研究院国家重点实验室

    责任作者:

    张冰玉,博士,研究员。主要研究方向:林木遗传育种。Email:byzhang@caf.ac.cn 地址:同上

  • 中图分类号: S792.11

Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’

  • 摘要:
      目的  干旱、高盐等逆境胁迫严重影响了植物的生长发育。研究表明,组氨酸激酶在植物逆境响应中起重要作用。本研究对银腺杨‘84K’组氨酸激酶基因PaHK3a在不同组织的表达模式分析,检测了其对生长素、细胞分裂素等植物激素处理下及人工干旱、盐碱等非生物胁迫下的表达,结合干旱、盐碱条件下丙二醛(MDA)及保护酶活性等生化指标,对该基因的功能进行了初步鉴定,为杨树抗逆分子育种研究奠定基础。
      方法  以‘84K’杨无菌苗为材料,通过实时定量PCR(qRT-PCR)技术分析PaHK3a基因在不同组织的表达模式。对‘84K’杨无菌苗进行浓度为10 mmol/L植物激素处理(ABA、6-BA、IBA、GA3及水杨酸(SA))及非生物胁迫处理(42 ℃高温、0 ℃低温、200 mmol/L NaCl和5% PEG6000),采用qRT-PCR技术分析PaHK3a基因对不同植物激素及非生物胁迫的表达响应;进一步对温室‘84K’杨进行自然干旱处理(6、8、10 d)、200 mmol/L NaCl(2、4、6 d)处理,测定不同胁迫时间点叶片PaHK3a基因的表达,以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性及MDA含量,并分析PaHK3a基因表达与生理指标的相关性,初步鉴定杨树PaHK3a基因的功能。
      结果  qRT-PCR结果显示,PaHK3a基因在叶片中表达量最高,根部中等,茎段最低。与正常条件下相比,在高温、低温、NaCl及PEG模拟干旱处理时,PaHK3a基因表达量与对照相比明显增高,分别为对照的2.63、1.49、1.54、1.58倍。用IBA诱导处理时,基因表达量与对照相比差异不大,而在6-BA、ABA、GA3及SA处理时,基因表达量与对照相比均呈现显著下调。在温室干旱、盐碱胁迫处理过程中,PaHK3a基因表达均显著高于对照,呈现先上升后下降的表达模式,MDA含量也呈现类似的趋势,而SOD活性则随处理时间的延长而持续升高,POD活性在干旱胁迫时先上升后下降,而高盐胁迫时呈上升趋势。生理指标与PaHK3a基因表达量相关系分析发现,在干旱和盐胁迫下,PaHK3a基因表达量与叶片MDA含量、SOD活性和POD活性均呈正相关。
      结论  PaHK3a基因在‘84K’杨根茎叶中均有表达,且叶中表达量最高;PaHK3a基因表达受细胞分裂素6-BA、GA3及ABA及SA等植物激素的负调控,同时,受温度胁迫、盐胁迫、水分胁迫等非生物胁迫正调控;温室人工干旱盐碱胁迫过程中,PaHK3a基因表达量升高,且与叶片MDA含量、SOD活性、POD活性均具有正相关性。研究结果初步显示,杨树PaHK3a基因参与杨树植物激素激素信号响应,并在抗逆境胁迫过程中发挥重要调控作用。
    Abstract:
      Objective  Abiotic stresses such as drought and salt seriously affect the growth and development of plants. Previous studies showed that histidine kinase played an important role during the process of plants responsing to abiotic stresses. In this study, we analyzed the expression of histidine kinase gene (PaHK3a) in roots, stems and leaves of poplar ‘84K’ (Poplus alba × P. glandulosa ‘84K’). And the expression of PaHK3a in leaves of in vitro ‘84K’ plants under various plant hormones and abiotic stresses was also detected. Together with the malondialdehyde (MDA) contents, superoxide dismutase (SOD) and peroxidase (POD) activities in leaves of poplar ‘84K’ in green house, the function of PaHK3a was preliminary proposed. The results in this study laid a foundation for molecular breeding of poplar for resistance.
      Method  Using in vitro poplar ‘84K’ as materials, the expression of PaHK3a gene in different organs, under plant hormone treatments (10 mmol/L ABA, 10 mmol/L 6-BA, 10 mmol/L IBA, 10 mmol/L GA3 and 10 mmol/L SA) and various abiotic stress conditions (42 ℃, 0 ℃, 200 mmol/L NaCl, and 5% PEG6000), was analyzed by qRT-PCR. Meanwhile, the expression of PaHK3a in leaves of green house grown poplar ‘84K’ plants under drought (6, 8, 10 d) and salt stress (2, 4, 6 d) was also detected, and the MDA contents, SOD and POD activities were measured, and the correlation between expression of PaHK3a gene and physiological indicators was analyzed to determine the function of PaHK3a preliminarily.
      Result  The expression of PaHK3a gene was highest in leaves, medium in roots and lowest in stems. The qRT-PCR results showed that the transcriptional levels of PaHK3a gene were about 2.63, 1.49, 1.54, 1.58 times of control, respectively under 42 ℃, 0 ℃, 200 mmol/L NaCl, and 5% PEG treatments. Under IBA treatment, the transcripts of PaHK3a were not significantly different from control. The expression of PaHK3a was down-regulated under the treatments of 6-BA, ABA, GA3 and SA, respectively. At different stress times of drought and salt treatment, the PaHK3a gene in leaves of greenhouse grown ‘84K’ plants increased significantly, with the style of increased first and then decreased; and the MDA content in leaves also had the similar style. SOD and POD activity were measured in drought and high salt, MDA content increased first and then decreased; SOD activity in leaves increased constantly during drought and salt stresses, and POD activity first increased and then decreased under drought stress, while increased constantly during salt stress. The correlation analysis between physiological indexes and PaHK3a gene expression found that under drought and salt stress, the expression of PaHK3a gene was positively correlated with MDA content, SOD activity and POD activity in leaves.
      Conclusion  The PaHK3a was expressed in roots, stems and leaves of poplar ‘84K’, with highest expression in leaves. The expression of PaHK3a was down-regulated by exogenous cytokinin (6-BA, GA3) and stress related plant hormones (ABA, SA), and up-regulated by temperature, salt and drought stresses. During the process of drought and salt stresses, the expression of PaHK3a increased significantly, with the increase of MDA content, SOD activity and POD activity, and it was positively correlated with MDA content, SOD activity and POD activity in leaves. Our results indicate that PaHK3a is involved in the response of poplar to plant hormones and plays an important role in poplar response to abiotic stresses.
  • 各种人类活动,如采矿、化石燃料燃烧、工业废气排放、以及过量使用化肥,源源不断地将重金属带入环境,给自然环境造成严重的生态毒理效应[1-2]。由重金属离子造成的包括大气、水体和土壤在内的环境污染统称为重金属污染,与有机质污染相比,重金属污染具有长期性、不可逆性和隐蔽性等特征[3]。通常,按重金属是否参与植物体内的各种新陈代谢反应,将其分为必需元素和非必需元素。其中,锌(Zn)作为一种植物必需的微量元素,能通过直接或间接参与植物体内的光合作用、呼吸作用以及碳水化合物的合成、运转等过程的方式,来促进植物的生长发育和提高其抗逆能力[4-5]。然而,当环境中的Zn含量超过某一临界阈值时,就会对植物产生毒害作用,如分解叶片内的叶绿素、降低光合作用速率和造成缺铁性失绿等,轻则使植物代谢过程发生紊乱、生长状况不良,重则导致植物死亡[6-7]

    与受到昆虫取食、光照强度、干旱等生物或非生物因子刺激时的效果一致,重金属胁迫能通过激发植物体内的茉莉酸信号途径和防御基因表达来间接地引发植物的诱导防御反应,从而使植物产生和积聚一系列有毒、抗营养和抗消化的新陈代谢产物,并对植食昆虫正常的生长、发育和繁殖造成抑制或干扰作用[8-10]。例如,Cabot等[11]研究发现镉胁迫能诱导拟南芥(Arabidopsis thaliana)激活茉莉酸-乙烯信号途径中防卫素基因(PDF1.2)的表达。Wang等[12]研究发现铅胁迫能显著提高沉水植物苦草(Vallisneria natans)体内的总酚和黄酮含量。然而,依据近来提出的“权衡”假说,为了减弱重金属造成的毒害作用,植物势必会降低需要消耗能量的化学防御水平,从而选择将更多的能量用于提高植物对重金属的解毒能力,如大量合成抗氧化酶、增强对重金属的转运和隔离能力[13-14]。目前,植物化学防御在重金属胁迫下的响应趋势尚不明确,但其可能受植物和重金属种类,以及胁迫浓度和时间的影响。

    作者前期研究发现,Zn胁迫下的银中杨(Populus alba ‘Berolinensis’)能抑制叶部害虫舞毒蛾(Lymantria dispar)幼虫的生长发育[15],但由于叶片中富集的Zn也能对舞毒蛾产生有效的元素防御,因而尚不清楚Zn胁迫是否能对银中杨的化学防御产生影响。本研究用不同含量的Zn处理盆栽1年生银中杨的土壤,通过测定其生长发育状况、叶片内营养物质和次生物质含量以及蛋白酶抑制剂活性,以期弄清Zn胁迫对银中杨生长发育的影响,以及银中杨化学防御在Zn胁迫下的响应趋势,为重金属污染地区的植物虫害防治提供基础理论依据。

    2015年4月末,于黑龙江平山森林植物试种苗圃,将1年生银中杨插扦苗种植于塑料花盆中,花盆规格为25 cm×28 cm(高×直径)。定期浇水除草,待树苗生长2个月后,将长势基本一致的苗木分成4组,每组50株。然后,用ZnSO4水溶液处理其中3组苗木生长的土壤,使土壤中的Zn2+含量分别为300、500和700 mg/kg,其标记代码依次为Zn300、Zn500和Zn700。最后1组加等量的水作为对照,标记代码为CK。在Zn胁迫后30、40、50 d,于每组中随机选择9株苗木,设为3个重复,然后将每个重复中的所有叶片采摘下来用冰盒带回实验室,并放入-40 ℃低温冰箱中保存,用于测定营养物质和次生物质含量以及蛋白酶抑制剂活性。Zn在土壤中的质量分数设计依据土壤环境质量标准,农林生产和植物正常生长的土壤临界值进行确定[16]

    在Zn胁迫2个月后,于每组中随机选择9株银中杨进行整株采样。清理干净后,整株苗木按根、茎、叶分为3部分,然后测定每株苗木的株高、地径(植物土迹处的直径)和根长,以及测定根、茎和叶的鲜质量。接着将每株苗木的根、茎、叶在70 ℃下烘干至恒质量,测定其根、茎和叶的干质量。

    参照Bradford[17]和Nelson[18]的方法分别对叶片中蛋白质和可溶性糖进行提取和测定。参照Zhishen等[19]和任琴等[20]的方法分别对叶片中黄酮和木质素进行提取和测定。参照张健等[21]的方法对叶片中胰蛋白酶抑制剂(TI)和胰凝乳蛋白酶抑制剂(CI)进行提取和测定。

    采用SPSS19.0软件统计数据的平均值和标准差(n=3),并采用该软件的one-way ANOVA,以LSD(最小显著法)在0.05水平下分析各组之间银中杨生长发育状况的差异显著性,以及分析相同胁迫时间下的各组之间叶片中营养物质含量、次生物质含量或蛋白酶抑制剂活性的差异显著性。

    图 1表 1可知,Zn胁迫能使银中杨的生长参数(株高、根长和地径)和生物量参数(根、茎、叶的鲜质量和干质量)均显著低于对照(P<0.05),且其具有一定的浓度效应。说明Zn胁迫能抑制银中杨的生长发育,对其产生毒害作用。

    图  1  Zn胁迫对银中杨株高、根长和地径的影响
    图中数据均为平均值±标准差(n=3)。不同小写字母表示不同处理之间差异显著(P<0.05)。
    Figure  1.  Effects of Zn stress on plant height (A), root length (B) and ground diameter (C) of Populus alba 'berolinensis' seedlings
    Data in figure are means±SD (n=3). Different lowercases mean there is significant differences among the treatments at P<0.05 level.
    表  1  Zn胁迫对银中杨根、茎、叶鲜质量和干质量的影响
    Table  1.  Effects of Zn stress on the fresh and dry mass of root, stem and leaf of Populus alba 'berolinensis' seedlings
    处理组Treatment根质量Root mass/(g·plant-1)茎质量Stem mass/(g· plant-1)叶质量Leaf mass/(g· plant-1)
    鲜质量Fresh mass干质量Dry mass鲜质量Fresh mass干质量Dry mass鲜质量Fresh mass干质量Dry mass
    CK4.98±0.59a3.77±0.29a14.93±0.81a7.58±0.51a19.54±2.01a9.09±0.96a
    Zn3003.92±0.19b3.06±0.34b13.66±0.19b6.73±0.1b16.77±0.15b7.02±0.18b
    Zn 5003.53±0.37b2.81±0.34b13.60±0.27b6.47±0.07b15.75±0.67b6.39±0.36b
    Zn 7003.46±0.33b2.64±0.28b11.24±1.33b5.26±0.67c15.53±0.53b6.36±0.3b
    注:表中数据均为平均值±标准差(n=3)。同列不同小写字母表示不同处理之间差异显著(P<0.05)。CK、Zn300、Zn500、Zn700分别代表土壤中的Zn处理含量为0、300、500和700 mg/kg。下同。Notes: data in table are means±SD (n=3). Different lowercases within the same column mean there is significant differences among the treatments at P<0.05 level. CK, Zn300, Zn500, Zn700 represent the Zn contents of 0, 300, 500, 700 mg/kg, respectively (the same below).
    下载: 导出CSV 
    | 显示表格

    Zn胁迫下叶片中的蛋白质和可溶性糖含量分别见图 2。由图 2可知,在Zn胁迫后30、40和50 d,各含量处理均使银中杨叶片中的蛋白质和可溶性糖含量显著低于对照(P<0.05),但处理组之间的蛋白质含量均差异不显著(P>0.05),而可溶性糖含量均表现为随胁迫含量的增高而增高。

    图  2  Zn胁迫对银中杨叶片内蛋白质(A)和可溶性糖(B)含量的影响
    图中数据均为平均值±标准差(n=3)。不同小写字母表示相同胁迫时间下各组之间差异显著(P<0.05)。下同。Data in figure are means±SD (n=3).
    Figure  2.  Effects of Zn stress on the protein (A) and soluble sugar (B) content in leaves of Populus alba 'berolinensis' seedlings
    Different lowercases within the same stress duration mean there is significant differences among the treatments at P<0.05 level. The same below.

    Zn胁迫下叶片中的黄酮和木质素含量见图 3。由图 3可知,在Zn胁迫后30、40和50 d,各含量处理均诱使银中杨叶片内的黄酮和木质素含量显著高于对照(P<0.05),但诱导效果随Zn胁迫含量的增高而降低。说明Zn胁迫能诱导银中杨增强叶片内的酚类代谢,且低含量胁迫诱导效果最强。

    图  3  Zn胁迫对银中杨叶片内黄酮(A)和木质素(B)含量的影响
    Figure  3.  Effects of Zn stress on the flavonoids (A) and lignin (B) content in leaves of Populus alba 'berolinensis' seedlings

    Zn胁迫下叶片中的TI和CI活性见图 4。由图 4可见,在Zn胁迫后30、40和50 d,各含量处理均使银中杨叶片内的TI和CI活性显著低于对照,且高含量胁迫下的TI和CI活性均显著低于中含量和低含量胁迫(P<0.05)。

    图  4  Zn胁迫对银中杨叶片内TI和CI活性的影响
    Figure  4.  Effects of Zn stress on the trypsin inhibitor (TI) (A) and chymotrypsin inhibitor (CI) (B) activity in leaves of Populus alba 'berolinensis' seedlings

    重金属胁迫下,敏感型植物容易遭受其带来的毒害作用,造成植物体内各种生理生化过程发生紊乱,例如光合作用减弱,膜通透性改变和细胞器结构破坏,从而严重影响植物的正常生长发育[22-23]。即使耐性较强的植物,为了在重金属胁迫下维持细胞内稳态的平衡,必将会消耗植物生长过程中的有效能量,最终使植物生长发育受阻[24]。本研究发现Zn胁迫能使银中杨的生长参数(株高、根长和地径)和生物量参数(根、茎、叶的鲜质量和干质量)均显著低于对照(P<0.05),且其具有一定的浓度效应。说明Zn作为植物生长的必需元素,在其含量超过一定阈值时,也能抑制银中杨的生长发育,对银中杨产生毒害作用。此外,重金属胁迫下,生长发育受抑制也在万寿菊(Tagetes erecta)[25]、钻天杨(Populus nigra)[26]和美洲黑杨(P. deltoides)[27]等草本或木本植物中被报道,表明植物生长发育状况是表征重金属胁迫对植物毒害作用的一项重要生理指标。

    取食是植食性昆虫获取自身生长发育所需能源的唯一途径,当植物中的营养物质含量低于昆虫最适量范围时,就会造成昆虫营养不良和必需元素缺乏,从而影响昆虫的取食和正常生长发育[28-29]。因此,植物体内的营养物质含量能充当一种潜在的抗虫因素。本研究发现在Zn胁迫后30、40和50 d,各含量处理均使银中杨叶片中的蛋白质和可溶性糖含量显著低于对照(P<0.05)。说明生长基质中过量的Zn能导致银中杨叶片内营养物质缺乏。可以推断,蛋白质和可溶性糖含量降低是Zn胁迫银中杨能抑制害虫舞毒蛾生长发育的重要原因之一。此外,本研究还发现在Zn胁迫后的各时间段,处理组之间的蛋白质含量均差异不显著(P>0.05),可溶性糖含量均表现为随胁迫含量的增高而增高。说明蛋白质和可溶性糖作为一类渗透调节物质[30],能协助银中杨部分缓解高含量Zn胁迫对其造成的毒害作用。

    次生代谢产物作为植物体内一类结构复杂、种类繁多的有机物质,虽不直接参与植物的生长发育,但能抑制植食昆虫对食物的消化利用、干扰其交配行为以及吸引天敌,在植物抵御昆虫侵袭过程中发挥着重要作用,是衡量植物抗虫性能的一个重要生理指标[31-32]。本研究发现Zn各含量胁迫均诱使银中杨叶片内的黄酮和木质素含量在各时间段显著高于对照(P<0.05),但诱导效果随Zn胁迫含量的增高而降低。说明Zn胁迫能诱导银中杨增强叶片内的酚类代谢,且低含量胁迫诱导效果最强。银中杨在Zn胁迫下,叶片内黄酮和木质素的大量合成,可能是因为黄酮和木质素能参与银中杨对Zn的解毒,如提高银中杨的抗氧化能力和对Zn的螯合能力。

    TI和CI是两种与植物抗虫性密切相关的一类小分子蛋白质,能与昆虫消化道内的蛋白消化酶形成酶抑制剂复合物,从而降低昆虫对食物中蛋白质的消化能力[33-34]。张凯等[35]在研究重金属胁迫对杨树(P. simonii×P. nigra)叶片中防御蛋白活性的影响时发现,Cu或Cd胁迫均会促使TI和CI活性迅速升高。说明植物叶片内蛋白酶抑制剂能积极响应外部环境中的重金属胁迫。然而,本研究发现,Zn各含量胁迫均使银中杨叶片内的TI和CI活性在各时间段显著低于对照(P<0.05)。说明由Zn胁迫在银中杨叶片内引起的氧化压力可能对TI和CI造成了氧化损伤,TI和CI对重金属的响应趋势取决于所研究的重金属和植物种类。

    重金属胁迫下,植物可能同时存在着两种抗虫防御机制:重金属介导的植物化学防御和重金属元素的直接防御[36]。二者均有助于提高植物对植食性昆虫的抗性,且根据最近提出的“联合”假说[37],重金属可以与化学防御物质产生相加或协同效应,造成植物的防御反应全面提升。因此,依据本研究的结果和先前研究的银中杨叶片对Zn的富集结果[38],可表明作者前期研究发现的毒理结果[15],即取食Zn胁迫下银中杨的叶片后,舞毒蛾幼虫生长发育减缓,可归结为重金属介导的植物化学防御和叶片中富集重金属的元素防御的共同作用。

    综上所述,生长基质中过量的Zn会抑制银中杨的生长发育,且能影响银中杨的化学防御水平。然而,银中杨叶片内与抗虫相关物质的含量或活性对Zn胁迫的响应趋势并不一致,具体表现为营养物质含量减少、次生物质含量增多、蛋白酶抑制剂活性减弱。

  • 图  1   PaHK3a基因在‘84K’杨根、茎和叶中的表达情况

    *表示差异显著,P < 0.05;**表示差异极显著,P < 0.01。下同。* means significant difference, P < 0.05; ** means very significant difference, P < 0.01. The same below.

    Figure  1.   Expression of PaHK3a in roots, stems and leaves of ‘84K’ poplar

    图  2   非生物胁迫处理下‘84K’杨叶片PaHK3a基因的表达差异

    CK. 对照;HT. 42 ℃高温处理;LT. 0 ℃低温处理。下同。CK, control; HT, 42 ℃ high temperature treatment; LT, 0 ℃ low temperature treatment. The same below.

    Figure  2.   Expression differences of PaHK3a in ‘84K’leaves under abiotic stresses

    图  3   不同植物激素处理下‘84K’杨叶片PaHK3b基因的表达差异

    Figure  3.   Expression differences of PaHK3a in ‘84K’ leaves under several plant hormone treatments

    图  4   ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片PaHK3a基因表达量

    Figure  4.   Expression of PaHK3a in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  5   ‘84K’杨温室干旱(A)及盐(B)胁迫下叶片MDA的含量

    Figure  5.   MDA contents in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  6   ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片SOD活性

    Figure  6.   SOD activity in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  7   ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片POD活性

    Figure  7.   POD activity in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    表  1   qRT-PCR引物序列

    Table  1   Primer sequences of qRT-PCR

    引物名称
    Primer name
    引物序列(5′→3′)
    Primer sequence (5′→3′)
    产物长度
    Product length/bp
    PaHK3a-q-F CTCAGTTTCTTGCTACAGTTTCCC 243
    PaHK3a-q-R ACATCATCCATTATTGCCCTCA
    Actin-F AAACTGTAATGGTCCTCCCTCCG 193
    Actin-R GCATCATCACAATCACTCTCCGA
    下载: 导出CSV

    表  2   干旱、盐胁迫下PaHK3a基因表达与生理指标相关性分析

    Table  2   Correlation analysis between expression of PaHK3a and physiological indexes under drought and salt stresses

    生理指标
    Physiological index
    干旱胁迫
    Drought stress
    盐胁迫
    Salt stress
    MDA0.9010.994**
    SOD0.7910.734
    POD0.954*0.690
    下载: 导出CSV
  • [1]

    Muller B, Sheen J. Arabidopsis cytokinin signaling pathway [J/OL]. Science Signaling STKE, 2007, 2007(407): cm5 [2020−02−13]. https://stke.sciencemag.org/content/2007/407/cm5.

    [2]

    Werner T, Schmulling T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5): 527−538.

    [3]

    Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. PNAS, 2007, 104(51): 20623−20628.

    [4]

    Jeon J, Kim N Y, Kim S, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285: 23371−23386.

    [5]

    Sheen J. Phosphorelay and transcription control in cytokinin signal transduction[J]. Science, 2002, 296: 1650−1652.

    [6]

    Heyl A, Schmülling T. Cytokinin signal perception and transduction[J]. Current Opinion in Plant Biology, 2003, 6(5): 480−488.

    [7]

    Schaller F, Zerbe P, Reinbothe S, et al. The allene oxide cyclase family of Arabidopsis thaliana: localization and cyclization[J]. FEBS Journal, 2008, 275(10): 2428−2441.

    [8]

    Hwang I, Chen H C, Sheen J, et al. Two-component signal transduction pathways in Arabidopsis[J]. Plant Physiol, 2002, 129(5): 500−515.

    [9]

    Maruyama-Nakashita A, Nakamura Y, Yamaya T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4 mediated cytokinin-dependent regulation[J]. Plant Journal, 2004, 38(5): 779−789.

    [10]

    Chefdor F, Héricourt F, Koudounas K, et al. Highlighting type ARRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus[J]. Plant Science, 2018, 277: 68−78.

    [11]

    Kim H J, Ryu H, Hong S H, et al. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(3): 814−819.

    [12]

    Riefler M, Novsk O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. Plant Cell, 2006, 18: 40−54.

    [13]

    Dello I R, Linhares F S, Scacchi E, et al. Cytokinins determine Arabidopsis root meristem size by controlling cell differentiation[J]. Current Biology, 2007, 17(8): 678−682.

    [14]

    Higuchi M, Pischke M S , Mhnen A P , et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. PNAS, 2004, 101(23): 8821−8826.

    [15]

    Bartrina I, Jensen H, Novák O, et al. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity[J]. Plant Physiology, 2007, 173(3): 1783−1797.

    [16]

    Kang N Y, Cho C, Kim N Y, et al. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana[J]. Journal of Plant Physiology, 2012, 169(14): 1382−1391.

    [17]

    Jin J, Nan Y K, Sunmi K, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(30): 23371−23386.

    [18]

    Cortleven A, Nitschke S, Klaumünzer M, et al. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors[J]. Plant Physiology, 2014, 164(3): 1470−1483.

    [19]

    Nieminen K, Immanen J, Laxell M, et al. Cytokinin signaling regulates cambial development in poplar[J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 20032−20037.

    [20]

    Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176.

    [21]

    Verslues P E. ABA and cytokinins: challenge and opportunity for plant stress research[J]. Plant Molecular Biology, 2016, 91(6): 629−640.

    [22]

    Tran L S, Shinozaki K, Yamaguchi-Shinozaki K, et al. Role of cytokinin responsive two component system in ABA and osmotic stress signaling[J]. Plant Signal & Behavior, 2010, 5(2): 148−150.

    [23]

    Ramsong N, Praveen S, Ratna K, et al. Histidine kinases in plants: cross talk between hormone and stress responses[J]. Plant Signaling & Behavio, 2012, 7(10): 1230−1237.

    [24]

    Wang B, Guo B, Xie X, et al. A novel histidine kinase gene, ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis[J]. Gene, 2012, 501(2): 171−179.

    [25]

    Vernooij B, Friedrich L, Weymann K, et al. A central role of salicylic acid in plant disease resistance[J]. Science, 1994, 266: 1247−1250.

    [26]

    Yusuf M, Hasan S A, Ali B, et al. Effect of salicylic acid on salinity-induced changes in Brassica juncea[J]. Journal of Integrative Plant Biology, 2008, 50(9): 1096−1102.

    [27]

    Brito G, Costa A, Fonseca H M A C, et al. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotie stress[J]. Scientia Horticulturae, 2003, 97(S3−S4): 411−417.

    [28] 张磊, 谢锦忠, 张玮, 等. 模拟干旱环境下伐桩注水对毛竹生理特性的影响[J]. 林业科学研究, 2017, 30(1):145−153.

    Zhang L, Xie J Z, Zhang W, et al. Effects of water storage in bamboo stumps on physiological characteristicsof phyllostachys edulis under simulated drought environment[J]. Forest Research, 2017, 30(1): 145−153.

    [29] 党晓宏, 高永, 蒙仲举, 等. 3种滨藜属植物幼苗叶片对NaCl胁迫的生理响应[J]. 北京林业大学学报, 2016, 38(10):38−49.

    Dang X H, Gao Y, Meng Z J, et al. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 2016, 38(10): 38−49.

    [30]

    Sofo A, Dichio B, Xiloyannis C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Science, 2004, 166(2): 293−302.

    [31]

    Kong J, Dong Y, Xu L, et al. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil[J]. Journal of Plant Interactions, 2014, 9(1): 450−459.

  • 期刊类型引用(5)

    1. 徐金生,姜礅,严善春. Cd胁迫对银中杨幼苗金属元素代谢及其氧化应激的影响. 安徽农业大学学报. 2023(06): 1000-1005 . 百度学术
    2. 单羽,任晓宁,李雪梅. 非生物胁迫对植物碳水化合物及其代谢相关酶影响的研究进展. 安徽农业科学. 2021(20): 6-9 . 百度学术
    3. 熊露露,卢囿佐,刘月炎,彭海兰,黄兴敏,王健健. 外源锌对氮胁迫下薏苡幼苗生长及抗氧化系统的影响. 中国农学通报. 2021(36): 24-29 . 百度学术
    4. 刘景华. 不同锌胁迫浓度下杨树生长以及生物量参数的变化. 林业科技通讯. 2020(07): 73-74 . 百度学术
    5. 王月月,董效文,姜礅,狄贵秋,王沫,刘晓霞,孟昭军,严善春. 镉、锌复合胁迫对银中杨化学防御的影响. 北京林业大学学报. 2019(06): 96-101 . 本站查看

    其他类型引用(5)

图(7)  /  表(2)
计量
  • 文章访问数:  1169
  • HTML全文浏览量:  362
  • PDF下载量:  62
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-06-08
  • 网络出版日期:  2020-12-18
  • 发布日期:  2021-02-23

目录

/

返回文章
返回