高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

榛子全基因组ChSEP基因鉴定、多克隆抗体制备及其在胚珠中的表达研究

赵棣 胡献文 魏珩 程云清 刘剑锋

赵棣, 胡献文, 魏珩, 程云清, 刘剑锋. 榛子全基因组ChSEP基因鉴定、多克隆抗体制备及其在胚珠中的表达研究[J]. 北京林业大学学报, 2023, 45(8): 123-131. doi: 10.12171/j.1000-1522.20220221
引用本文: 赵棣, 胡献文, 魏珩, 程云清, 刘剑锋. 榛子全基因组ChSEP基因鉴定、多克隆抗体制备及其在胚珠中的表达研究[J]. 北京林业大学学报, 2023, 45(8): 123-131. doi: 10.12171/j.1000-1522.20220221
Zhao Di, Hu Xianwen, Wei Heng, Cheng Yunqing, Liu Jianfeng. Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules[J]. Journal of Beijing Forestry University, 2023, 45(8): 123-131. doi: 10.12171/j.1000-1522.20220221
Citation: Zhao Di, Hu Xianwen, Wei Heng, Cheng Yunqing, Liu Jianfeng. Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules[J]. Journal of Beijing Forestry University, 2023, 45(8): 123-131. doi: 10.12171/j.1000-1522.20220221

榛子全基因组ChSEP基因鉴定、多克隆抗体制备及其在胚珠中的表达研究

doi: 10.12171/j.1000-1522.20220221
基金项目: 国家自然科学基金项目(32171840),吉林省科技厅中青年科技创新创业卓越人才(团队)项目(20210509033RQ)
详细信息
    作者简介:

    赵棣。主要研究方向:植物生物技术。Email:1749463642@qq.com 地址:136000吉林省四平市铁西区海丰大街1301号吉林师范大学生命科学学院

    责任作者:

    刘剑锋,教授,博士生导师。主要研究方向:植物生物技术。Email:jianfengliu1976@163.com 地址:同上

  • 中图分类号: S722.3+7;Q943.1

Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules

  • 摘要:   目的  正常的胚珠充实是榛子种仁形成的前提与基础,胚珠充实不足可频繁导致瘪仁、空壳果实的形成,SEP基因被认为是可以影响胚珠发育的E类MADS-box基因。为研究SEP在榛子种仁充实过程中的重要调节作用,拟鉴定参与榛子胚珠发育的重要作用基因ChSEP,并制备ChSEP的多克隆抗体,开展正常发育与败育胚珠中ChSEP的免疫组织化学分析,以期为深入解析SEP基因调控榛子胚珠发育机制提供科学依据。  方法  用榛子基因组与转录组数据鉴定基因组中所有的SEP基因家族成员,并进行重要SEP基因的原核表达载体构建、基因表达及多克隆抗体制备,最后对参与胚珠发育调控的重要SEP蛋白进行免疫组织化学检测。  结果  (1)榛子基因组中鉴定到3条ChSEP蛋白序列(Cor0054610.1、Cor0008190.1、Cor0119400.1),所有ChSEP蛋白均包含SRF-TF与K-box结构域。制备了Cor0054610.1的多克隆抗血清E18305和E18306,它们的抗体抗原条带分子量在45 kDa左右,1∶1 000稀释后可检测到1 ~ 2 ng抗原。(2)免疫组织化学分析结果表明:ChSEP在发育胚珠与败育胚珠的珠被中均有表达,珠被中的ChSEP表达量高于子叶,正常发育胚珠与败育胚珠ChSEP分布特征差异不明显。  结论  本研究在转录与蛋白水平上提供了ChSEP(Cor0054610.1)参与榛子胚珠发育调控的证据,为深入解析榛子胚珠发育机理提供了科学依据。

     

  • 图  1  拟南芥、葡萄、毛果杨与榛子SEP蛋白的系统发育分析

    Figure  1.  Phylogenetic analysis of A. thaliana, V. vinifera, P. persica and C. heterophylla SEP proteins

    图  2  ChSEP基因家族多重序列比对(A)、保守结构域分布(B)与基因表达模式分析(C)

    Figure  2.  Multiple sequence alignment (A) and the conserve domain distribution (B) and gene expression model of ChSEP gene family (C)

    图  3  ChSEP(Cor0054610.1)PCR扩增结果与蛋白表达纯化检测

    A. PCR扩增结果:1. Marker;2. ChSEP(N-64-216)。B. 蛋白表达及可溶性检测:1. pGEX-4T-AB1空载诱导表达;2. 0.4 mg/mL BSA;3. Marker;4. 上清;5. 上清2;6. 包涵体2倍稀释(8 mol/L尿素溶解);7. 包涵体10倍稀释(8 mol/L尿素溶解)。C. 纯化检测:1. Marker;2. 0.4 mg/mL 牛血清白蛋白; 3. 包涵体10倍稀释液(8 mol/L尿素溶解);4. 包涵体5倍稀释液(8mol/L尿素溶解)。A, PCR amplification results: 1, marker; 2, ChSEP (N-64-216). B, protein expression and solubility detection: 1, pGEX-4T-AB1 empty-load-induced expression; 2, 0.4 mg/mL BSA; 3, marker; 4, supernatant; 5, supernatant 2; 6, two times dilution of inclusion bodies (dissolved in 8 mol/L urea); 7, ten times dilution of inclusion bodies (dissolved in 8 mol/L urea). C, purification detection:1, marker; 2, 0.4 mg/mL bovine serum albumin; 3, ten times dilution of inclusion bodies (dissolved in 8 mol/L urea); 4, five times dilution of inclusion bodies (dissolved in 8 mol/L urea).

    Figure  3.  ChSEP (Cor0054610.1) PCR amplification results and detection of protein expression and purification

    图  4  ChSEP E18305(A)和E18306(B)抗体的Western Blot检测

    泳道上方10 ng、5 ng、1 ng、500 pg分别表示该泳道中加有10 ng、5 ng、1 ng、500 pg ChSEP抗原。10 ng, 5 ng, 1 ng and 500 pg above the lane respectively indicate that 10 ng, 5 ng, 1 ng and 500 pg ChSEP antigen have been added to the lane.

    Figure  4.  Western blot detection of ChSEP E18305 (A) and E18306 (B) antibody

    图  5  榛子正常发育与败育胚珠的免疫组织化学分析

    A1与A2含正常发育与败育2个胚珠,A1为对照,一抗为清水,A2为处理,一抗为ChSEP抗体。B1与B2为正常发育胚珠,B1为对照,一抗为清水,B2为处理,一抗为ChSEP抗体。C1与C2为败育胚珠,C1为对照,一抗为清水,C2为处理,一抗为ChSEP抗体。ov. 败育胚珠;OV. 正常发育胚珠;Int. 珠被;F. 珠柄。A1 and A2 contain two ovules: normal development and abortive ovules. A1 is the control, the first antibody is distilled water, A2 is treatment, and the first antibody is ChSEP antibody; B1 and B2 are normal ovules, B1 is control, the first antibody is distilled water, B2 is treatment, and the first antibody is ChSEP antibody; C1 and C2 are aborted ovules, C1 is the control, the first antibody is distilled water, C2 is treatment, and the first antibody is ChSEP antibody. ov, abortive ovule; OV, normal development ovule. Int, integument; F, funicle.

    Figure  5.  Immunohistochemical analysis of normal development and abortive ovules of hazelnut

    表  1  免疫流程

    Table  1.   Immunization process

    过程
    Process
    周期
    Cycle
    剂量
    Dose/mg
    弗氏佐剂
    Freund’s adjuvant
    动物状态
    Animal state
    第1次免疫 1st immunization 第1天 1st day 0.30 完全 Completely 良好 Good
    第2 ~ 4免疫 2nd to 4th immunization 第12、26、40天 12th, 26th, 40th day 0.15 不完全 Incompletely 良好 Good
    免疫动物采血
    Blood collection from immunized animal
    第59天 59th day 采血正常
    Blood collection is normal
    下载: 导出CSV

    表  2  ChSEP(Cor0054610.1)抗血清ELISA效价检测

    Table  2.   ELISA titer detection of ChSEP (Cor0054610.1) antiserum

    分组 Group稀释比例 Dilution ratioOD450(OD阳性−OD空白)/(OD阴性−OD空白
    (ODpositive−ODblank)/(ODnegative−ODblank
    E18305E18306E18305E18306
    阳性对照 Positive control 1∶1 000 1.365 0 1.448 3 103.48 882.00
    1∶4 000 1.230 8 1.384 7 92.25 842.25
    1∶8 000 1.082 8 1.247 0 81.43 756.19
    1∶16 000 0.902 9 1.142 2 67.38 690.06
    1∶32 000 0.720 9 0.968 1 53.16 581.88
    1∶64 000 0.533 9 0.767 2 704.86 33.19
    1∶128 000 0.352 3 0.548 4 445.43 23.24
    1∶256 000 0.2338 0.369 2 276.14 15.10
    1∶512000 0.152 3 0.237 2 159.71 9.09
    阴性对照 Negative control 1∶1 000 0.053 3 0.038 7
    1∶64 000 0.041 2 0.059 1
    空白对照 Blank control 0.040 5 0.037 1
    下载: 导出CSV
  • [1] Theißen G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution[J]. Development, 2016, 143(18): 3259−3271. doi: 10.1242/dev.134080
    [2] Pabón-Mora N, Wong G K, Ambrose B A. Evolution of fruit development genes in flowering plants[J]. Frontiers in Plant Science, 2014, 5(5): 300.
    [3] Theißen G. Development of floral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1): 75−85. doi: 10.1016/S1369-5266(00)00139-4
    [4] 刘剑锋, 孙莹, 魏珩, 等. 榛子胚珠不同发育阶段circRNA的分析与鉴定[J]. 园艺学报, 2021, 48(6): 1053−1066.

    Liu J F, Sun Y, Wei H, et al. Analysis and identification of circRNAs of hazel ovule at different developmental stages[J]. Acta Horticulturae Sinica, 2021, 48(6): 1053−1066.
    [5] Liu J F, Cheng Y Q, Yan K, et al. The relationship between reproductive growth and blank fruit formation in Corylus heterophylla Fisch[J]. Scientia Horticulturae, 2012, 136: 128−134. doi: 10.1016/j.scienta.2012.01.008
    [6] Liu J F, Luo Q Z, Zhang X Z, et al. Identification of vital candidate microRNA/mRNA pairs regulating ovule development using high-throughput sequencing in hazel[J]. BMC Developmental Biology, 2020, 20(1): 13. doi: 10.1186/s12861-020-00219-z
    [7] Liu J F, Wei H, Zhang X Z, et al. Chromosome-level genome assembly and HazelOmics database construction provides insights into unsaturated fatty acid synthesis and cold resistance in hazelnut (Corylus heterophylla)[J]. Frontiers in Plant Science, 2021, 12: 766548. doi: 10.3389/fpls.2021.766548
    [8] Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series, 1999, 41(41): 95−98.
    [9] Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
    [10] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [11] Subramanian B, Gao S, Lercher M, et al. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research, 2019, 47(W1): W270−W275. doi: 10.1093/nar/gkz357
    [12] Bailey T L, Boden M, Buske F A, et al. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Web Server issue): W202−W208.
    [13] 陈德鑫, 李雯雯, 李思斌, 等. 烟草NteIF2α的原核表达、纯化及多克隆抗体制备和应用[J]. 农业生物技术学报, 2017, 25(1): 50−57.

    Chen D X, Li W W, Li S B, et al. Prokaryotic expression, purification of NteIF2α and preparation and application of polyclonal antibody in Nicotiana tabacum[J]. Journal of Agricultural Biotechnology, 2017, 25(1): 50−57.
    [14] 郝英辰, 龙月, 郭豪, 等. 烟草NtGCN2的原核表达、纯化及多克隆抗体制备[J]. 农业生物技术学报, 2019, 27(1): 170−179.

    Hao Y C, Long Y, Guo H, et al. Prokaryotic expression, purification and polyclonal antibody preparation of tobacco (Nicotiana tabacum) NtGCN2[J]. Journal of Agricultural Biotechnology, 2019, 27(1): 170−179.
    [15] Smaczniak C, Immink R G, Angenent G C, et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies[J]. Development, 2012, 139(17): 3081−3098. doi: 10.1242/dev.074674
    [16] Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405: 200−203. doi: 10.1038/35012103
    [17] Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Current Biology, 2004, 14(21): 1935−1940. doi: 10.1016/j.cub.2004.10.028
    [18] Jetha K, Theißen G, Melzer R. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes[J]. Nucleic Acids Research, 2014, 42(17): 10927−10942. doi: 10.1093/nar/gku755
    [19] Liu J F, Liu J Y, Zhang X Z, et al. Pollen tube in hazel grows intermittently: role of Ca2+ and expression of auto-inhibited Ca2+ pump[J]. Scientia Horticulturae, 2021, 282: 110032. doi: 10.1016/j.scienta.2021.110032
    [20] Liu J F, Zhang H D, Cheng Y Q, et al. Comparison of ultrastructure, pollen tube growth pattern and starch content in developing and abortive ovaries during the progamic phase in hazel[J]. Frontiers in Plant Science, 2014, 5(5): 528.
    [21] Liu J F, Cheng Y Q, Liu C M, et al. Pollen tube in hazel grows intermittently: role of Ca2+ and expression of auto-inhibited Ca2+ pump[J]. Scientia Horticulturae, 2013, 150: 348−353. doi: 10.1016/j.scienta.2012.12.001
    [22] Xu Y, Zhang L, Xie H, et al. Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch)[J]. Tree Genetics & Genomes, 2008, 4(4): 693−703.
    [23] Ireland H S, Yao J L, Tomes S, et al. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening[J]. Plant Journal, 2013, 73(6): 1044−1056. doi: 10.1111/tpj.12094
    [24] 高玮林, 张力曼, 薛超玲, 等. 枣 E 类 MADS 基因在花和果中的表达及其蛋白互作研究[J]. 园艺学报, 2022, 49(4): 739−748.

    Gao W L, Zhang L M, Xue C L, et al. Expression of E-type MADS-box genes in flower and fruits and protein interaction analysis in Chinese jujube[J]. Acta Horticulturae Sinica, 2022, 49(4): 739−748.
    [25] Ampomah-Dwamena C, Morris B A, Sutherland P, et al. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion[J]. Plant Physiology, 2002, 130(2): 605−617. doi: 10.1104/pp.005223
    [26] Pneuli L, Hareven D, Broday L, et al. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers[J]. Plant Cell, 1994, 6(2): 175−186. doi: 10.2307/3869637
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  18
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-05
  • 修回日期:  2022-06-28
  • 录用日期:  2023-07-10
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回