Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

功能性状和立地条件与树木根系NO3吸收能力的关系

于淼, 张碧嘉, 王泽锦, 于凤珍, 赵新航, 杨佳绒, 李品, 樊大勇, 徐程扬

于淼, 张碧嘉, 王泽锦, 于凤珍, 赵新航, 杨佳绒, 李品, 樊大勇, 徐程扬. 功能性状和立地条件与树木根系NO3吸收能力的关系[J]. 北京林业大学学报, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
引用本文: 于淼, 张碧嘉, 王泽锦, 于凤珍, 赵新航, 杨佳绒, 李品, 樊大勇, 徐程扬. 功能性状和立地条件与树木根系NO3吸收能力的关系[J]. 北京林业大学学报, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
Citation: Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497

功能性状和立地条件与树木根系NO3吸收能力的关系

基金项目: 朝阳区平原生态林定向抚育关键技术集成与示范(编号CYSF-1904)。
详细信息
    作者简介:

    于淼。主要研究方向:根系生理生态学。Email:yumiao2020@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    徐程扬,博士,教授。主要研究方向:城市林业。Email:cyxu@bjfu.edu.cn 地址:同上。

  • 中图分类号: S728.2;Q948.11

Relationship of functional traits and site conditions with NO3 uptake capacity of tree root

  • 摘要:
    目的 

    养分是干旱瘠薄立地中树木生长的重要限制因素,树木对干旱瘠薄立地中养分的吸收利用方式决定其生态适应对策。本研究通过野外原位测定,探究根系氮吸收动力学及其与根系形态性状间的耦合关系,为揭示林木根系在干旱瘠薄环境中的生理功能奠定基础。

    方法 

    以北京市百望山森林公园内的山桃、栓皮栎和元宝枫为对象,采用以硝态氮(NO3)为唯一氮源的改良型梯度霍格兰营养液,在一般程度的干旱瘠薄立地和极端程度的干旱瘠薄立地中分别开展野外原位测定根系NO3 吸收动力学研究,并通过Pearson相关性分析和通径分析研究根系NO3 吸收速率与根系功能性状间的关系。

    结果 

    树种、立地条件和两者的交互效应对NO3 吸收速率和动力学参数均有显著或极显著的影响。3个树种对氮的亲和性均较高,元宝枫根系对NO3 的吸收速率偏低,在2种立地条件中均显著低于山桃和栓皮栎。生长在更加干旱瘠薄立地中的速生树种对NO3的吸收具有补偿性。根系功能性状与NO3的吸收速率有很好的耦合关系,比根长和比根表面积对根系NO3吸收速率有显著正效应,根直径和根组织密度则相反。分支结构性状中,分支强度和链接数对根系NO3吸收速率的作用较弱。

    结论 

    生长速度较快的山桃和栓皮栎根系的NO3 吸收速率在极端干旱瘠薄立地胁迫下显著降低,元宝枫则相反。采取提高最大吸收速率和降低氮亲和力的“速度策略”可保障速生树种根系对NO3的补偿性吸收。高比根长、高比根表面积、低根直径和低根组织密度的形态性状组合,可有效提高根系在干旱瘠薄立地中对NO3 的吸收速率。

    Abstract:
    Objective 

    Nutrient is an important limiting factor for tree growth in drought and barren sites, and the way trees absorbing and using nutrients in drought and barren sites determines their ecological adaptation strategies. In this paper, the kinetics of root nitrogen uptake and the coupling relationship between root morphological traits were measured in situ in the field, which laid a foundation for revealing the physiological function of trees in drought and barren environments.

    Method 

    We took Prunus davidiana, Acer truncatum and Quercus variabilis in Baiwangshan Forest Park of Beijing as the research objectives. We used modified Hogland nutrient solution with NO3 concentration gradients to carry out in-situ measurement of root NO3 uptake kinetics in generally and extremely drought and barren site conditions, respectively. The relationship between root NO3 uptake rate and root functional traits was analyzed by Pearson correlation and path analysis.

    Result 

    Tree species, site conditions and the interaction of above two factors all had an significant or extremely significant effect on root NO3 uptake rate and kinetic parameters. Three tree species all had high nitrogen affinity. The uptake rate of NO3 in the root of A. truncatum was lower, and it was significantly lower than that of P. davidiana and Q. variabilis under the above two site conditions. Under the site conditions of more drought and barren, fast growing tree species had compensatory absorption of NO3. Root functional traits and the uptake rate of NO3 had a good coupling relationship. The result showed that the morphological traits of specific root length (SRL) and specific root surface area (SRA) had significantly positive effects on NO3 uptake rate of roots, while root diameter (RD) and root tissue density (RTD) had negative effects. In terms of branching structure traits, branching intensity and number of links had weak effects on NO3 uptake rate.

    Conclusion 

    The NO3 uptake rate of P. davidiana and Q. variabilis with a faster growth rate decreases significantly under the extremely drought and barren site stress, while A. truncatum is the opposite. The “speed strategy” of increasing the maximum absorption rate and reducing nitrogen affinity ensures the compensatory absorption of NO3 by the roots of fast-growing tree species. The combination of morphological traits with higher SRL, higher SRA, lower RD and lower RTD can effectively improve the uptake rate of NO3 by roots in drought and barren sites.

  • 图  1   不同立地条件中山桃、元宝枫、栓皮栎根系的NO3 吸收差异

    Site A. 一般程度的干旱瘠薄立地;Site B. 极端程度的干旱瘠薄立地;Pd. 山桃;At. 元宝枫;Qv. 栓皮栎。大写字母表示同一树种不同NO3浓度处理之间的差异显著性,小写字母表示同一NO3浓度处理不同树种之间的差异显著性。Site A, a generally drought and barren site; Site B, an extremely drought and barren site; Pd, Prunus davidiana; At, Acer truncatum; Qv, Quercus variabilis. Capital letters indicate significant difference among different NO3 concentration treatments of the same tree species, and small letters indicate significant difference among varied tree species under the same NO3 concentration treatment.

    Figure  1.   Difference of NO3 uptake of Prunus davidiana, Acer truncatum and Quercus variabilis under different site conditions

    图  2   根系功能性状与NO3 吸收速率的相关性分析

    V. NO3 吸收速率 ;RD. 平均根系直径;SRL. 比根长 ;SRA. 比根表面积;RTD. 根组织密度; RDMC. 根干物质含量;BI. 根分支强度;Tips.根尖数;NL. 链接数 ;红色代表负相关关系,蓝色代表正相关关系。***代表p < 0.001,**代表p < 0.01,*代表p < 0.05。下同。V, NO3 uptake rate; RD, average root diameter; SRL, specific root length; SRA, specific root area; RTD, root tissue density; RDMC, root dry matter content; BI, branching intensity; NL, number of links. Red represents negative correlation, and blue represents positive correlation. *** means p < 0.001; ** means p < 0.01; * means p < 0.05. The same below.

    Figure  2.   Correlation analysis of root functional traits and NO3 uptake rate

    表  1   树种、立地条件及NO3 梯度浓度处理对根系NO3 吸收影响的方差分析

    Table  1   ANOVA results for compound effects of tree species, site conditions and NO3 concentration gradient on root NO3 uptake rate

    变异来源
    Source of variation
    df NO3 吸收速率 NO3 uptake
    rate (V)/(mmol·g−1·h−1
    F p
    树种 Tree species (Sp) 2 137.441 < 0.001
    立地 Site (Si) 1 27.182 < 0.001
    NO3 浓度
    NO3 concentration (Con)
    4 15.086 < 0.001
    Sp × Si 2 10.440 < 0.001
    Sp × Con 8 3.562 0.002
    Si × Con 4 0.293 0.881
    Sp × Si × Con 8 1.343 0.241
    下载: 导出CSV

    表  2   树种、立地条件及其交互效应对NO3 吸收动力学参数影响的方差分析

    Table  2   ANOVA on the tree species, site conditions and their interaction on kinetic parameters of NO3 uptake

    动力学参数
    Kinetic parameter
    树种 Tree species 立地 Site 树种 × 立地 Tree species × site
    F p F p F p
    Vmax 542.3 < 0.001 5.5 0.038 189.9 < 0.001
    Km 994.2 < 0.001 1120.6 < 0.001 1701.6 < 0.001
    Cmin 1328.0 < 0.001 1697.0 < 0.001 2556.0 < 0.001
    α 785.7 < 0.001 303.7 < 0.001 119.8 < 0.001
    注:Vmax.最大吸收速率;Km.米氏常数;Cmin.根系养分离子内流与外溢浓度相等时(V = 0)的介质浓度,α为离子流入根系的速度。Notes: Vmax, maximum uptake rate; Km, Michaelis constant; Cmin, medium concentration at which nutrient ions inflo and outflow from roots are equal (V = 0); α, velocity of ions flowing into roots.
    下载: 导出CSV

    表  3   不同立地条件中山桃、元宝枫、栓皮栎根系NO3 吸收的动力学参数及方程

    Table  3   Kinetic parameters and equations of NO3 uptake of P. davidiana, A. truncatum and Q. variabilis roots under different site conditions

    动力学参数
    Kinetic parameter
    Pd Qv At
    Site A Site B Site A Site B Site A Site B
    Vmax/(mmol·g−1·h−1 0.134 ± 0.002Aa 0.077 ± 0.004Ba 0.070 ± 0.005Ba 0.144 ± 0.005Aa 0.010 ± 0.000Ab 0.012 ± 0.002Ab
    Km/(mmol·L−1 0.346 ± 0.009Ab 0.291 ± 0.005Ba 0.214 ± 0.010Bc 1.239 ± 0.012Aa 0.340 ± 0.017Ab 0.259 ± 0.009Bb
    Cmin/(mmol·L−1 1.236 ± 0.017Ab 1.007 ± 0.005Ba 0.708 ± 0.003Bb 4.216 ± 0.066Aa 1.227 ± 0.008Ab 0.991 ± 0.026Ba
    α/(L·g−1·h−1 0.386 ± 0.011Aa 0.266 ± 0.004Bb 0.326 ± 0.010Aa 0.116 ± 0.009Bb 0.030 ± 0.004Bc 0.046 ± 0.003Ac
    方程 Equation 1/V = 3.057/C + 5.020 1/V = 5.892/C + 6.056 1/V = 4.312/C + 9.663 1/V = 16.925/C − 1.187 1/V = 35.082/C + 74.124 1/V = 16.387/C + 73.634
    R2 0.987 0.956 0.860 0.996 0.980 0.935
    注:C代表营养液中NO3 浓度,V代表NO3 吸收速率。大写字母表示同一树种内不同立地条件之间的差异显著性,小写字母表示同一立地条件中不同树种之间的差异显著性。Notes: C represents NO3 concentration. V represents NO3 uptake rate. Capital letters indicate significant difference among varied site conditions of the same tree species, and small letters indicate significant difference among varied tree species under the same site conditions.
    下载: 导出CSV

    表  4   根系功能性状与根系NO3 吸收速率的通径分析

    Table  4   Path analysis of root functional traits and NO3 uptake rate

    性状
    Trait
    简单相关系数
    Simple correlation
    coefficient
    直接通径系数
    Direct path
    coefficient
    显著性
    Significance
    间接通径系数 Indirect path coefficient 决策系数
    Decision
    coefficient
    RD SRL SRA RTD RDMC BI Tips NL 合计
    Total
    RD −0.352 0.018 0.873 −0.230 −0.154 −0.022 0.011 0.011 0.015 0.000 −0.369 −0.013
    SRL 0.654 0.412 0.016 −0.010 0.322 −0.091 0.023 −0.002 0.001 0.000 0.243 0.369
    SRA 0.610 0.387 0.032 −0.007 0.342 −0.162 0.048 0.001 0.000 0.000 0.222 0.322
    RTD −0.129 0.298 0.017 −0.001 −0.126 −0.210 −0.067 −0.001 −0.023 0.001 −0.427 −0.166
    RDMC −0.182 −0.117 0.295 −0.002 −0.080 −0.158 0.171 −0.016 0.022 −0.002 −0.065 0.029
    BI 0.027 0.057 0.606 0.003 −0.015 0.007 −0.007 0.032 −0.055 0.005 −0.030 0.000
    Tips 0.012 −0.106 0.597 −0.003 −0.002 −0.001 0.064 0.024 0.030 0.007 0.118 −0.014
    NL −0.001 0.008 0.969 −0.001 −0.014 0.005 0.031 0.029 0.036 −0.095 −0.009 0.000
    下载: 导出CSV
  • [1]

    Smolander A, Henttonen H M, Nöjd P, et al. Long-term response of soil and stem wood properties to repeated nitrogen fertilization in a N-limited Scots pine stand[J]. European Journal of Forest Research, 2022, 141(3): 421−431. doi: 10.1007/s10342-022-01448-6

    [2]

    Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2): 347−357. doi: 10.1093/aob/mcs293

    [3] 任浩, 高国强, 马耀远, 等. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385

    Ren H, Gao G Q, Ma Y Y, et al. Root nitrogen uptake and its relationship with root morphological and chemical traits in Korean pine ( Pinus koraiensis) at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385

    [4]

    Nguyen T, Xu C Y, Tahmasbian I , et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis[J]. Geoderma, 2017, 288: 79−96.

    [5]

    Griffiths M, York L M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency[J]. Plant Physiology, 2020, 182(4): 1854−1868. doi: 10.1104/pp.19.01496

    [6]

    Li C, Li Q, Qiao N, et al. Inorganic and organic nitrogen uptake by nine dominant subtropical tree species[J]. IForest-Biogeosciences and Forestry, 2015, 9(2): 253.

    [7]

    Olmo M, Lopez-Iglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody plant species. Implications for a drier climate[J]. Plant and Soil, 2014, 384(1−2): 113−129. doi: 10.1007/s11104-014-2178-6

    [8]

    Hong J T, Ma X X, Yan Y, et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant and Soil, 2018, 424(1−2): 63−72. doi: 10.1007/s11104-017-3434-3

    [9]

    Weemstra M, Kiorapostolou N, van Ruijven J, et al. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration[J]. Functional Ecology, 2020, 34(3): 575−585. doi: 10.1111/1365-2435.13520

    [10]

    Liu Q, Wang H, Xu X. Root nitrogen acquisition strategy of trees and understory species in a subtropical pine plantation in southern China[J]. European Journal of Forest Research, 2020, 139(5): 791−804. doi: 10.1007/s10342-020-01284-6

    [11]

    Nikolova P S, Bauerle T L, Häberle K H, et al. Fine-root traits reveal contrasting ecological strategies in European beech and Norway spruce during extreme drought[J]. Frontiers in Plant Science, 2020, 11: 1211. doi: 10.3389/fpls.2020.01211

    [12]

    Wysokinski A, Lozak I. The dynamic of nitrogen uptake from different sources by pea ( Pisum sativum L.)[J]. Agriculture, 2021, 11(1): 81. doi: 10.3390/agriculture11010081

    [13] 韦柳端, 朱济友, 李夏榕, 等. 根系功能性状对干瘠立地适应的种间差异: 以北京石质山地主要观赏树种为例[J]. 生态学报, 2021, 41(23): 9492−9501.

    Wei L D, Zhu J Y, Li X R, et al. Interspecific trait variation in the adaptation of root functional traits to dry-barren sites: a case study of the main ornamental plant species in stony mountainous region of Beijing[J]. Acta Ecologica Sinica, 2021, 41(23): 9492−9501.

    [14] 吕德国, 王英, 秦嗣军, 等. 冷凉条件对山荆子幼苗根系氮素吸收动力学参数的影响[J]. 园艺学报, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014

    Lü D G, Wang Y, Qin S J, et al. Effects of cool and cold conditions on nitrogen uptake kinetics in Malus baccata Borkh. seedlings[J]. Acta Horticulturae Sinica, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014

    [15]

    Henke M, Sarlikioti V, Kurth W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model[J]. Plant & Soil, 2014, 385(1−2): 49−62.

    [16] 韩丛蔚. PBZ和TIBA对大叶黄杨苗木养分吸收的影响[D]. 北京: 北京林业大学, 2018.

    Han C W. Effects of PBZ and TIBA on nutrient uptake of Euonymus japonicus seedlings[D]. Beijing: Beijing Forestry University, 2018.

    [17] 白雪, 赵成章, 康满萍. 金塔绿洲不同林龄多枝柽柳根系分叉数与分支角度的关系[J]. 生态学报, 2021, 41(5): 1878−1884.

    Bai X, Zhao C Z, Kang M P. Relationship between root forks and branch angle of Tamarix ramosissima at different stand ages in oasis of Jinta county[J]. Acta Ecologica Sinica, 2021, 41(5): 1878−1884.

    [18] 宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现[J]. 干旱区研究, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13

    Song X Y, Zhu Z Y, Liu Y W, et al. Application of path analysis in stepwise linear regression SPSS[J]. Aird Zone Research, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13

    [19]

    López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280−287. doi: 10.1016/S1369-5266(03)00035-9

    [20]

    Boer M D, Santos T J, Ten T K H. Modeling of root nitrate responses suggests preferential foraging arises from the integration of demand, supply and local presence signals[J]. Frontiers in Plant Science, 2020, 11: 708. doi: 10.3389/fpls.2020.00708

    [21]

    Li Q, Wu Y, Chen W, et al. Cultivar differences in root nitrogen uptake ability of maize hybrids[J]. Frontiers in Plant Science, 2017, 8: 1060. doi: 10.3389/fpls.2017.01060

    [22]

    Swift J, Alvarez J M, Araus V, et al. Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates[J]. Proceedings of the National Academy of Sciences, 2020, 117(23): 12531−12540. doi: 10.1073/pnas.1918619117

    [23] 沈文森. 北京低山地区人工林土壤质量的研究[D]. 北京: 北京林业大学, 2013.

    Shen W S. Soil quality of different man-made forest types in lower mountain area, Beijing[D]. Beijing: Beijing Forestry University, 2013.

    [24]

    León-Sánchez L, Nicolás E, Prieto I, et al. Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi-arid shrubland[J]. Journal of Ecology, 2020, 108(1): 47−60.

    [25]

    Mou P, Jones R H, Tan Z, et al. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J]. Plant & Soil, 2013, 364(1−2): 373−384.

    [26]

    Sterck F J, Poorter G L. Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest[J]. Journal of Ecology, 2006, 94(6): 1192−1200. doi: 10.1111/j.1365-2745.2006.01162.x

    [27]

    Sun C H, Yu J Q, Hu D G. Nitrate: a crucial signal during lateral roots development[J]. Frontiers in Plant Science, 2017, 8: 485.

    [28]

    Ito T, Tanaka-Oda A, Masumoto T, et al. Different relationships of fine root traits with root ammonium and nitrate uptake ratess in conifer forests[J]. Journal of Forest Research, 2023, 28(1): 25−32.

    [29]

    Asim M, Ullah Z, Xu F Z, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11: 633. doi: 10.3390/genes11060633

    [30]

    McCormack M L, Guo D, Iversen C M, et al. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes[J]. New Phytologist, 2017, 215: 27−37. doi: 10.1111/nph.14459

    [31]

    Bardgett R D, Mommer L, de Vries F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12): 692−699.

    [32]

    Abalos D, de Deyn G B, Kuyper T W, et al. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland[J]. Global Change Biology, 2014, 20(1): 265−275. doi: 10.1111/gcb.12350

    [33]

    Cardon Z G, Stark J M, Herron P M, et al. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): 18988−18993. doi: 10.1073/pnas.1311314110

    [34] 毛兰花, 查轩, 张婧, 等. 红壤侵蚀退化地马尾松幼苗生长及养分利用效率对施肥的响应[J]. 水土保持学报, 2022, 36(1): 316−324.

    Mao L H, Zha X, Zhang J, et al. Response of Pinus massoniana seedling growth and fertilizer uptake efficiency to fertilization in eroded and degrade red soil regions of southern China[J]. Journal of Soil and Water Conservation, 2022, 36(1): 316−324.

    [35]

    Kong D, Wang J, Wu H, et al. Nonlinearity of root trait relationships and the root economics spectrum[J]. Nature Communications, 2019, 10(1): 1−9. doi: 10.1038/s41467-018-07882-8

    [36]

    Mommer L, Weemstra M. The role of roots in the resource economics spectrum[J]. New Phytologist, 2012, 195: 725−727. doi: 10.1111/j.1469-8137.2012.04247.x

    [37] 张立芸, 段青松, 李永梅. 坡耕地山原红壤大豆根系构型及根土复合体力学特性[J]. 中国生态农业学报(中英文), 2022, 30(9): 1464−1476.

    Zhang L Y, Duan Q S, Li Y M. Research on soybean roots architecture and root-soil cpmplex mechanical properties in mountain red soil on sloping farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1464−1476.

    [38]

    Wang P, Shu M, Mou P, et al. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies[J]. Ecology and Evolution, 2018, 8(6): 3367−3375. doi: 10.1002/ece3.3794

    [39]

    Teste F P, Jones M D, Dickie I A. Dual-mycorrhizal plants: their ecology and relevance[J]. New Phytologist, 2020, 225(5): 1835−1851. doi: 10.1111/nph.16190

    [40]

    Chen W, Koide R T, Eissenstat D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes[J]. Functional Ecology, 2018, 32(4): 858−869. doi: 10.1111/1365-2435.13041

  • 期刊类型引用(11)

    1. 杨勇,陈林,庞丹波,李学斌,刘瑞亮. 不同凋落物处理对贺兰山三种林分土壤呼吸的影响. 西南农业学报. 2023(03): 593-601 . 百度学术
    2. 陈炎根,胡艳静,黄莎,刘波,吴继来,王懿祥. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响. 浙江农林大学学报. 2023(05): 1054-1062 . 百度学术
    3. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 . 百度学术
    4. 刘洪柳,王泽鑫,郭晋平,张芸香. 林分密度对华北落叶松天然次生林林下植被和土壤呼吸的影响. 广西林业科学. 2022(02): 190-196 . 百度学术
    5. 李素新,覃志杰,刘泰瑞,郭晋平. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响. 水土保持学报. 2020(01): 268-274 . 百度学术
    6. 段北星,蔡体久,宋浩,肖瑞晗. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响. 生态学报. 2020(04): 1357-1366 . 百度学术
    7. 巫志龙,周成军,周新年,刘富万,朱奇雄,黄金湧,陈文. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异. 林业科学. 2019(06): 142-149 . 百度学术
    8. 段北星,满秀玲,宋浩,刘家霖. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征. 北京林业大学学报. 2018(02): 40-50 . 本站查看
    9. 李良,夏富才,孙越,张骁. 阔叶红松林下早春植物生物量分配. 北京林业大学学报. 2017(01): 34-42 . 本站查看
    10. 邵英男,田松岩,刘延坤,李云红,陈瑶,孙志虎. 密度调控对长白落叶松人工林土壤呼吸的影响. 北京林业大学学报. 2017(06): 51-59 . 本站查看
    11. 赵佳琪,牟长城,吴彬,周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响. 北京林业大学学报. 2017(10): 13-23 . 本站查看

    其他类型引用(18)

图(2)  /  表(4)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  109
  • PDF下载量:  42
  • 被引次数: 29
出版历程
  • 收稿日期:  2022-12-06
  • 修回日期:  2023-02-06
  • 录用日期:  2023-12-17
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回