Effects of Mohe-Daqing oil pipeline project construction on typical forest ecosystems in Daxing'an Mountains.
-
摘要: 中俄输油管道工程漠河—大庆段贯穿大兴安岭地区及松嫩平原区,施工不可避免地会对森林植被和土壤产生影响。本文以大兴安岭典型的兴安杜鹃—白桦林、越桔—兴安落叶松林和胡枝子—樟子松林为对象,研究中俄输油管道工程建设对森林土壤化学性质、生物量和植物多样性的影响。结果显示: 1)输油管道工程建设对土壤pH值没有显著影响(P>0.05),但使土壤全磷量减少(P<0.05),0~10 cm土层全氮量减少(P<0.05),而10~20 cm和20~30 cm土层全氮量增加,兴安杜鹃—白桦林0~10 cm和10~20 cm土层全钾量减少(P<0.05),而越桔—兴安落叶松林和胡枝子—樟子松林土壤全钾量基本没有影响(P>0.05); 2)兴安杜鹃—白桦林中乔木层生物量大幅度下降(P<0.05),灌木和草本层生物量略有增加,但差异不显著(P>0.05),越桔—兴安落叶松林和胡枝子—樟子松林中乔木层和灌木层生物量大幅度下降(P<0.05),而草本层生物量显著增加(P<0.05); 3)输油管道工程建设对森林乔木和灌木物种多样性的影响大于草本植物,越桔—兴安落叶松林灌木层生物多样性变化较小,另外2个类型森林的乔木和灌木生物多样性均有不同程度的降低;胡枝子—樟子松林草本植物多样性略有升高,而另外2个类型略微降低。研究结果表明,施工破坏土壤导致植被恢复困难;土壤结构较差地点的生态系统在受到破坏后,应该考虑施加更多的人为措施来促进植被恢复,否则可能会对输油管线的安全运营造成危害。Abstract: Mohe-Daqing section of the China-Russia oil pipeline project runs through Daxing’an Mountains and the Songnen Plain. Project construction would disturb vegetation and soil of the forests. In this study, we measured soil properties, plant biomass and species biodiversity in the operational region of the oil pipeline and the non-operational region in theRhododendron dauricum--Betula platyphylla forest, Vaccinum vitis-idaea--Larix gmelini forest and Lespedeza bicolor--Pinus sylvestris var. mongolica forest. The results showed that: 1) Pipeline construction had no effects on soil pH; however, total P concentration decreased significantly (P<0.05). Total N concentration decreased significantly (P<0.05) in the soil layer of 0--10 cm; however, it increased in the soil layers of 10--20 cm and 20--30 cm in all of the three forests. Total K concentration decreased significantly (P<0.05) in the soil layers of 0--10 cm and 10--20 cm in R. dauricum--B. platyphylla forest; however, there was no change in the total K concentration (P0.05) after pipeline construction in V. vitis-idaea--L. gmelini forest and L. bicolor--P. sylvestris var. mongolica forest. 2) Tree biomass decreased significantly (P<0.05) in R. dauricum--B. platyphylla forest. However, shrub and herb biomass did not change significantly (P0.05) in this forest. Tree and shrub biomass decreased significantly (P<0.05) in V. vitis-idaea--L. gmelini forest and L. bicolor--P. sylvestris var. mongolica forest. In contrast, herb biomass increased significantly (P0.05) in these two forests. 3) Oil pipeline project construction had more effects on tree and shrub species diversity than on the herb species diversity. Tree and shrub species biodiversity decreased at all sites after construction except for shrub species biodiversity in the V. vitis-idaea--L. gmelini forest. Herb species biodiversity increased in L. bicolor--P. sylvestris var. mongolica forest; however, it decreased in R. dauricum--B. platyphylla forest and V. vitis-idaea--L. gmelini forest. Our results indicated that restoration of the vegetation was difficult after oil pipeline project construction due to the damage to both vegetation and soil. More artificial measures are necessary to restore the vegetation. Otherwise, the degraded ecosystem would be harmful to the pipeline at sites with poor soil textures.
-
Keywords:
- oil pipeline project /
- soil chemical property /
- biomass /
- plant species biodiversity
-
-
[1] PU M, MA J G. Progress of China’s oil and gas pipeline development in 2010[J]. International Petroleum Economics, 2011,19(3):26-34.
[1] TUBB R. Pipeline and gas journal’s 2010 international pipeline construction report[J]. Pipeline Gas Journal, 2010,237(2):46-49.
[2] LI G Y, JIN H J, SHENG Y, et al. Recent advances in frozen ground engineering geology survey along the China-Russia crude oil pipeline route (Mo’he-Daqing section) [J]. Journal of Glaciology and Geocryology, 2008,30(1):170-175.
[2] 蒲明, 马建国. 2010年我国油气管道新进展[J]. 国际石油经济, 2011,19(3):26-34. [3] CHEN L D, GAO Q C. Chance and challenge for China on ecosystem management: lessons from the west-to-east pipeline project construction[J]. Ambio, 2006,35:91-93.
[3] YANG S Z, JIN H J, JI Y J, et al.Revegetation in permafrost regions along a linear project[J]. Journal of Glaciology and Geocryology, 2008,30(5):875-882.
[4] LAURANCE W F. New pipeline threatens Ecuadorian rainforest[J]. Trends in Ecology Evolution, 2001,16:429-430.
[4] CHEN H, LI S C, ZHENG D. Features of ecosystems alongside Qinghai-Xizang highway and railway and the impacts of road construction on them[J]. Journal of Mountain Science, 2003,21(5):559-567.
[5] WEI J F. Study of vegetation restoration and revegetation during the constructing of the Qinghai-Tibet railway[J]. Journal of Glaciology and Geocryology, 2003,25(Suppl.1):195-198.
[5] YU X, WANG G, ZOU Y, et al. Effects of pipeline construction on wetland ecosystems: Russia-China oil pipeline project (Mohe-Daqing section)[J]. Ambio, 2010,39:447-450.
[6] ZHOU Y L. Vegetation of Da Hinggan Ling in China[M]. Beijing: Science Press, 1991.
[6] NAETH M A, MCGILL W B, BAILEY A W. Persistence of changes in selected soil chemical and physical properties after pipeline installation in solonetzic native rangeland[J]. Canadian Journal of Soil Science, 1987,67:747-763.
[7] SOON Y K, ARSHAD M A, RICE W A, et al. Recovery of chemical and physical properties of boreal plain soils impacted by pipeline burial[J]. Canadian Journal of Soil Science, 2000,80(3):489-497.
[7] LU R K.Soil and agricultural chemistry analysis[M]. Beijing: Chinese Agricultural Science and Technology Press, 1999.
[8] XU Q X. Effect of thinng on soil physicochemical property and carbon storage of the natural Larix gmelinii forest in Great Xing’an Mountains[D]. Harbin: Northeast Forestry University, 2013.
[8] OLSON E R, DOHERTY J M. The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands[J]. Ecological Engineering, 2012,39(7):53-62.
[9] KNOTT D M, WENNER E L, WENDT P H. Effects of pipeline construction on the vegetation and macrofauna of two South Carolina, USA salt marshes[J]. Wetlands, 1997,17(1):65-81.
[9] WANG C, GAO H Z, ZANG Y Q. Study on the biomass of Betula platyphylla forest tree[J]. Forestry Science Technology, 2010,35(1):7-9.
[10] XIAO J, WANG Y, SHI P, et al. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions[J]. Environmental Monitoring Assessment, 2014,186(11):8037-8048.
[10] NING B. Study on stand structure dynamic and biomass for Mongolian scots pine in plantation[D].Harbin: Northeast Forestry University, 2007.
[11] OLANDER L P, SCATENA F N, SILVER W L. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico[J]. Forest Ecology Management, 1998,109:33-49.
[11] MA K P, HUANG J H, YU S L, et al. Plant community diversity in Dongling Mountain, Beijing, China Ⅱ: species richness, evenness and species diversities[J]. Acta Ecologica Sinica, 1995,15(3):268-277.
[12] 李国玉, 金会军, 盛煜, 等. 中国—俄罗斯原油管道工程(漠河—大庆段)冻土工程地质考察与研究进展[J]. 冰川冻土,2008,30(1):170-175. [12] CUI J, CAI T J, YANG Y, et al.Effects of Mohe-Daqing oil pipeline project on soil nutrient in the areas along the line[J]. Journal of Soil and Water Conservation, 2013,27(3):143-149.
[13] GU H Y, JIN J B, CHEN X W, et al. Effects of logging disturbance on soil chemical properties of Larix gmelini forests in the northern slope on Greater Hinggan Mountains[J]. Chinese Journal of Soil Science, 2009,40(2): 272-275.
[13] REID N B, NAETH M A. Establishment of a vegetation cover on tundra kimberlite mine tailings 2: a field study[J]. Restoration Ecology, 2005,13(4):602-608.
[14] 杨思忠, 金会军, 吉延峻, 等. 寒区线性工程沿线冻土区的植被恢复[J]. 冰川冻土, 2008,30(5):875-882. [14] SHEN W S, ZHANG H, ZOU C X, et al.Effects of the Qinghai-Tibet railway construction on ecosystems and the prediction methods for restoration[J]. Chinese Science Bulletin, 2004,49(9):909-914.
[15] YU L F, ZHU S Q, YE J Z, et al. Dynamics of a degraded karst forest in the process of natural restoration[J]. Scientia Silvea Sinicae, 2002,38(1):1-7.
[15] 陈辉, 李双成, 郑度. 青藏公路铁路沿线生态系统特征及道路修建对其影响[J]. 山地学报, 2003,21(5):559-567. [16] WANG X G, LI X Z, KONG F H, et al.Model of vegetation restoration under natural regeneration and human interference in the burned area of northern Daxinganling[J]. Chinese Journal of Ecology, 2003,22(5): 30-34.
[16] JORGENSON M T, JOYCE M R. Six strategies for rehabilitating land disturbed by oil development in Arctic Alaska[J]. Arctic, 1994,47(4):374-390.
[17] WU X Y, LU H, WANG X J. Changes of plant diversity, biomass, and soil nutrients in cutting slash of artificial sand-fixation forest after fallowing and natural restoration[J]. Chinese Journal of Ecology, 2007,26(7): 978-982.
[17] 魏建方. 青藏铁路建设中高寒草原植被恢复与再造技术的研究[J]. 冰川冻土, 2003,25(增刊1):195-198. [18] XIANG W H, TIAN D L, YAN W D, et al. Biomass dynamic and nutrient accumulation of natural restoration at early stage after fallow in clear-cutting forestland of Chinese fir plantation[J]. Acta Ecologica Sinica, 2003,23(4):695-702.
[18] JIN H, YU Q, LU L, et al. Degradation of permafrost in the Xing'anling Mountains, northeastern China[J]. Permafrost and Periglacial Processes, 2007,18:245-258.
[19] 周以良. 中国大兴安岭植被[M]. 北京: 科学出版社, 1991. [19] GUAN K Z, ZHANG D J. Effects of fire on vegetation in Daxing'an Mountains [J]. Environmental Science,1990,11(5):82-88.
[20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [20] WANG X G, LI X Z, HE H S, et al.Postfire succession of larch forest in the northern slope of Daxinganling[J]. Chinese Journal of Ecology, 2004,23(5):35-41.
[21] ZHANG Y H, TAN B X, SUN M L, et al.Impact of forest fire on understory vegetation and soil in typical forest types of Daxing’an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012,34(2):8-14.
[21] 徐庆祥. 抚育间伐对大兴安岭兴安落叶松天然林碳储量的影响[D]. 哈尔滨: 东北林业大学, 2013. [22] 王超, 高红真, 臧永琪.白桦林木单株生物量的研究[J]. 林业科技, 2010,35(1):7-9. [23] 宁波. 樟子松人工林结构动态及生物量的研究[D]. 哈尔滨:东北林业大学, 2007. [24] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ: 丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995,15(3):268-277. [25] 崔婧, 蔡体久, 杨业, 等. 漠河—大庆输油管道工程对沿线地区土壤养分的影响[J]. 水土保持学报, 2013,27(3):143-149. [26] 谷会岩, 金靖博, 陈祥伟, 等. 采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响[J]. 土壤通报, 2009,40(2): 272-275. [27] 沈渭寿, 张慧, 邹长新, 等. 青藏铁路建设对沿线高寒生态系统的影响及恢复预测方法研究[J]. 科学通报, 2004,49(9):909-914. [28] 喻理飞, 朱守谦, 叶镜中, 等. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002,38(1):1-7. [29] 王绪高, 李秀珍, 孔繁花, 等. 大兴安岭北坡火烧迹地自然与人工干预下的植被恢复模式初探[J]. 生态学杂志, 2003,22(5): 30-34. [30] NAGAIKE T, KAMITANI T, NAKASHIZUKA T. Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan[J]. Canadian Journal of Forest Research, 2005,35(12): 2832-2840.
[31] 吴祥云, 卢慧, 王晓娇. 固沙林采伐迹地撂荒后自然恢复的植物多样性、生物量与土壤养分含量的变化[J]. 生态学杂志, 2007,26(7): 978-982. [32] SANTANA J, PORTO M, REINO L, et al. Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests[J]. Forest Ecology Management, 2011,261(3): 447-459.
[33] 项文化, 田大伦, 闫文德, 等. 杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累[J]. 生态学报, 2003,23(4):695-702. [34] 关克志, 张大军. 大兴安岭森林火灾对植被影响分析[J]. 环境科学,1990,11(5):82-88. [35] 王绪高, 李秀珍, 贺红士, 等. 大兴安岭北坡落叶松林火后植被演替过程研究[J]. 生态学杂志, 2004,23(5):35-41. [36] 张玉红, 覃炳醒, 孙铭隆, 等. 林火对大兴安岭典型林型林下植被与土壤的影响[J]. 北京林业大学学报, 2012,34(2):8-14. [37] AUERBACH N A, WALKER M D, WALKER D A. Effects of roadside disturbance on substrate and vegetation properties in arctic tundra[J]. Ecological Applications, 1997,7(1):218-235.
-
期刊类型引用(11)
1. 赵熙来,周正,葛锐,罗伟豪,马旭彤,蒋慧,苏华维. 残次香梨与乳酸菌组合对四翅滨藜青贮的影响. 中国饲料. 2024(17): 155-161 . 百度学术
2. 张衡锋,杨绮,韦庆翠,张焕朝. 盐胁迫对10个品种紫薇的影响及其耐盐性综合评价. 东北林业大学学报. 2023(09): 34-40 . 百度学术
3. 李雨欣,罗秀丽,张婷婷,康宇乾,王鹏,江行玉,周扬. 盐胁迫下海马齿生理指标变化及相关基因表达分析. 农业生物技术学报. 2022(07): 1279-1289 . 百度学术
4. 刘鹤莹,张嫚,翟中葳,杨鹏,支苏丽,沈仕洲,张克强. 大薸对奶厅废水主要污染物的去除效果研究. 农业环境科学学报. 2022(11): 2525-2538 . 百度学术
5. 王涛,蒙仲举,张佳鹏,雷虹娟,张格. NaCl胁迫对紫穗槐幼苗生长及生理特性的影响. 西北林学院学报. 2021(01): 25-30 . 百度学术
6. 刘学良,姚俊修,刘翠兰,李善文,任飞,李庆华,吴海涛,翟红莲,吴德军,邢世岩,高红萍. 7个接骨木无性系苗木对盐胁迫的生理响应与评价. 中南林业科技大学学报. 2021(01): 37-44+79 . 百度学术
7. 鲁俊倩,武舒,钟姗辰,张伟溪,苏晓华,张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析. 北京林业大学学报. 2021(02): 46-53 . 本站查看
8. 丁丁,王红宝,郑伶杰,左永梅,韩民利,吴新海,郭艳超. 不同品种茶菊对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2021(03): 692-702 . 百度学术
9. 赵佳伟,李清亚,路斌,李艳,朱玉菲,栗浩,路丙社. 不同品种北美豆梨对NaCl胁迫的生理响应及耐盐性评价. 植物生理学报. 2019(01): 23-31 . 百度学术
10. 邹晓君,列志旸,薛立. NaCl胁迫对4种园林植物养分含量和贮量的影响. 华南农业大学学报. 2018(06): 77-84 . 百度学术
11. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 1800
- HTML全文浏览量: 129
- PDF下载量: 27
- 被引次数: 16