高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫斑牡丹表型性状与SSR分子标记的关联分析

吴静 成仿云 庞利铮 钟原 蔡长福

吴静, 成仿云, 庞利铮, 钟原, 蔡长福. 紫斑牡丹表型性状与SSR分子标记的关联分析[J]. 北京林业大学学报, 2016, 38(8): 80-87. doi: 10.13332/j.1000-1522.20150377
引用本文: 吴静, 成仿云, 庞利铮, 钟原, 蔡长福. 紫斑牡丹表型性状与SSR分子标记的关联分析[J]. 北京林业大学学报, 2016, 38(8): 80-87. doi: 10.13332/j.1000-1522.20150377
WU Jing, CHENG Fang-yun, PANG Li-zheng, ZHONG Yuan, CAI Chang-fu.. Association analysis of phenotypic traits with SSR markers in Paeonia rockii.[J]. Journal of Beijing Forestry University, 2016, 38(8): 80-87. doi: 10.13332/j.1000-1522.20150377
Citation: WU Jing, CHENG Fang-yun, PANG Li-zheng, ZHONG Yuan, CAI Chang-fu.. Association analysis of phenotypic traits with SSR markers in Paeonia rockii.[J]. Journal of Beijing Forestry University, 2016, 38(8): 80-87. doi: 10.13332/j.1000-1522.20150377

紫斑牡丹表型性状与SSR分子标记的关联分析

doi: 10.13332/j.1000-1522.20150377
基金项目: 

“863”国家高技术研究发展计划项目(2011AA100207)。

详细信息
    作者简介:

    吴静,博士生。主要研究方向:园林花卉分子育种。Email:835642891@qq.com地址:100083北京市海淀区清华东路35号北京林业大学园林学院。责任作者:成仿云,教授,博士生导师。主要研究方向:园林植物资源与育种。Email:chengfy8@263.com地址:同上。

    吴静,博士生。主要研究方向:园林花卉分子育种。Email:835642891@qq.com地址:100083北京市海淀区清华东路35号北京林业大学园林学院。责任作者:成仿云,教授,博士生导师。主要研究方向:园林植物资源与育种。Email:chengfy8@263.com地址:同上。

Association analysis of phenotypic traits with SSR markers in Paeonia rockii.

  • 摘要: 利用筛选出的11对多态性简单重复序列(SSR) 标记对99份紫斑牡丹材料进行多态性扫描,在分析其遗传多样性和群体结构的基础上,采用TASSEL2.1软件的一般线性模型(GLM)进行标记与32个观赏性状的关联分析。结果表明:11个多态性SSR标记共检测到94个等位变异,平均每个位点检测到等位变异8.5个;引物的多态性信息含量(PIC)变幅为0.146~0.850,平均值为0.593;遗传多样性变幅为0.152~0.862,平均为0.630。群体结构分析将供试材料划分为3个亚群;通过关联分析,发现5个标记位点与6个性状显著关联(P<0.01),各标记位点对表型变异的解释率为30.4%~55.8%,其中FJ024285和FJ024294标记与株高相关联,FE528073与顶小叶长、柱头颜色和房衣颜色相关联,FJ024287与柄叶比相关联,EU678295与色斑大小相关联。研究表明:所选紫斑牡丹种质资源群体的群体结构简单、遗传变异较为丰富,适用于紫斑牡丹目标性状的关联分析。关联分析能够有效地找到与紫斑牡丹表型性状紧密连锁的SSR标记,用于分子标记辅助育种。

     

  • [1] WU J, CHENG F Y, ZHANG D.Utilizing ‘High Noon’ in the crossing breeding of tree peonies and early identification of some hybrids by AFLP markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1551-1557.
    [1] CHENG F Y. Advances in the breeding of tree peonies and a cultivar system for the cultivar group[J]. International Journal of Plant Breeding, 2007, 1(2): 89-104.
    [2] YUAN J H, CHENG F Y, ZHOU S L. Hybrid origin of Paeonia × yananensis revealed by microsatellite markers, chloroplast gene sequences, and morphological characteristics[J]. International Journal of Plant Sciences, 2010, 171(4): 409-420.
    [2] LI R W, WANG C, DAI S L, et al. The association analysis of phenotypic traits with SRAP markers in Chrysanthemum[J]. Scientia Agricultura Sinica, 2012, 45(7): 1355-1364.
    [3] YUAN J H, CHENG F Y, ZHOU S L. Genetic structure of the tree peony (Paeonia rockii) and the Qinling Mountains as a geographic barrier driving the fragmentation of a large population[J]. PloS One, 2012, 7(4): e34955.
    [3] LIU H M, ZHU Y T, CHE D D,et al. Association analysis of ornamental traits with RAPD markers in 18 portion materials of Spiraea L.[J]. Acta Horticulturae Sinica, 2010, 37(7): 1125-1131.
    [4] CHENG F Y, LI J J, CHEN D Z, et al. Purple peony in China [M]. Beijing:China Forestry Publishing House, 2005: 77-84.
    [4] HAN X Y, WANG L S, SHU Q Y, et al. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers[J]. Biochemical Genetics, 2008, 46(3-4): 162-179.
    [5] PANG L Z, CHENG F Y, ZHONG Y, et al. Phenotypic analysis of association population for flare tree peony[J]. Journal of Beijing Forestry University, 2012, 34(6): 115-120.
    [5] ZHANG J J, SHU Q Y, LIU Z A, et al. Two EST-derived marker systems for cultivar identification in tree peony[J]. Plant Cell Reports, 2012, 31(2): 299-310.
    [6] WU J, CAI C F, CHENG F Y, et al. Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences[J]. Molecular Breeding, 2014, 34(4): 1853-1866.
    [6] YUAN J H. Studies on the origin of Paeonia rockii and P. yananensis[D]. Beijing: Beijing Forestry University, 2010.
    [7] LU H, ZHANG D, ZHANG L J, et al. Association analysis of five agronomic traits with SSR markers in Flammulina velutipes germplasm[J]. Journal of Agricultural Biotechnology, 2015, 23(1): 96-106.
    [7] YU H P, CHENG F Y, ZHONG Y, et al. Development of simple sequence repeat (SSR) markers from Paeonia ostii to study the genetic relationships among tree peonies (Paeoniaceae)[J]. Scientia Horticulturae, 2013, 164: 58-64.
    [8] GAO Y, LUO S X, WANG Y H, et al. Association analysis of bolting and flowering time with SSR and InDel markers in Chinese cabbage[J]. Acta Horticulturae Sinica, 2012, 39(6): 1081-1089.
    [8] 吴静, 成仿云, 张栋.‘正午’牡丹的杂交利用及部分杂种AFLP鉴定[J]. 西北植物学报, 2013, 33(8): 1551-1557.
    [9] HAO Q, LIU Z A, SHU Q Y, et al. Studies on Paeonia cultivars and hybrids identification based on SRAP analysis[J]. Hereditas, 2008, 145(1): 38-47.
    [10] FLINT-GARCIA S A, THORNSBERRY J M, BUCKLER E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology, 2003, 54: 357-374.
    [11] THORNSBERRY J M, GOODMAN M M, DOEBLEY J, et al. Dwarf polymorphisms associate with variation in flowering time[J]. Nature Genetics, 2001, 28(3): 286-289.
    [12] BORDES J, GOUDEMAND E, DUCHALAIS L, et al. Genome-wide association mapping of three important traits using bread wheat elite breeding populations[J]. Molecular Breeding, 2014, 33(4): 755-768.
    [13] EDAE E A, BYRNE P F, HALEY S D, et al. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes[J]. Theoretical and Applied Genetics, 2014, 127(4): 791-807.
    [14] SUKUMARAN S, DREISIGACKER S, LOPES M, et al. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments[J]. Theoretical and Applied Genetics, 2015, 128(2): 353-363.
    [15] WANG C, YANG Y, YUAN X, et al. Genome-wide association study of blast resistance in indica rice[J]. BMC Plant Biology, 2014, 14(1): 311.
    [16] GOWDA M, DAS B, MAKUMBI D, et al. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm[J]. Theoretical and Applied Genetics, 2015, 128(10): 1957-1968.
    [17] PACE J, GARDNER C, ROMAY C, et al. Genome-wide association analysis of seedling root development in maize (Zea mays L.)[J]. BMC Genomics, 2015, 16(1): 47.
    [18] SUWARNO W B, PIXLEY K V, PALACIOS-ROJAS N, et al. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize[J]. Theoretical and Applied Genetics, 2015, 128(5): 851-864.
    [19] WEN Z, TAN R, YUAN J, et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean[J]. BMC Genomics, 2014, 15(1): 809.
    [20] ZHANG J, SONG Q, CREGAN P B, et al. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm[J]. BMC Genomics, 2015, 16(1): 217.
    [21] DU Q, PAN W, XU B, et al. Polymorphic simple sequence repeat (SSR) loci within cellulose synthase (PtoCesA) genes are associated with growth and wood properties in Populus tomentosa[J]. New Phytologist, 2013, 197(3): 763-776.
    [22] PORTH I, KLAPTE J, SKYBA O, et al. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms[J]. New Phytologist, 2013, 200(3): 710-726.
    [23] HUSSEY S G, MIZRACHI E, GROOVER A, et al. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem[J]. BMC Plant Biology, 2015, 15(1): 117.
    [24] ECKERT A J, WEGRZYN J L, CUMBIE W P, et al. Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome[J]. New Phytologist, 2012, 193(4): 890-902.
    [25] PALLE S R, SEEVE C M, ECKERT A J, et al. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms[J]. Tree Physiology, 2013, 33(7): 763-774.
    [26] GAWENDA I, SCHRDER-LORENZ A, DEBENER T. Markers for ornamental traits in Phalaenopsis orchids: population structure, linkage disequilibrium and association mapping[J]. Molecular Breeding, 2012, 30(1): 305-316.
    [27] 李仁伟, 王 晨, 戴思兰, 等. 菊花品种表型性状与SRAP分子标记的关联分析[J]. 中国农业科学, 2012, 45(7): 1355-1364.
    [28] 刘慧民, 朱玉涛, 车代弟, 等. 绣线菊18份材料观赏性状与RAPD标记的关联分析[J]. 园艺学报, 2010, 37(7): 1125-1131.
    [29] 成仿云,李嘉珏,陈德忠, 等. 中国紫斑牡丹[M]. 北京:中国林业出版社, 2005: 77-84.
    [30] 庞利铮, 成仿云, 钟原, 等. 紫斑牡丹关联分析群体的表型分析[J]. 北京林业大学学报, 2012, 34(6): 115-120.
    [31] HOMOLKA A, BERENYI M, BURG K, et al. Microsatellite markers in the tree peony, Paeonia suffruticosa (Paeoniaceae) [J]. American Journal of Botany, 2010, 97(6): e42-e44.
    [32] HOU X G, GUO D L, CHENG S P, et al. Development of thirty new polymorphic microsatellite primers for Paeonia suffruticosa [J]. Biologia Plantarum, 2011, 55(4): 708-710.
    [33] HOU X G, GUO D L, WANG J. Development and characterization of EST-SSR markers in Paeonia suffruticosa (Paeoniaceae) [J]. American Journal of Botany, 2011,98(11): e303-e305
    [34] LI L, CHENG F, ZANG Q. Microsatellite markers for the Chinese herbaceous peony Paeonia lactiflora (Paeoniaceae) [J]. American Journal of Botany, 2011, 98(2): e16-e18.
    [35] SUN J, YUAN J, WANG B, et al. Development and characterization of 10 microsatellite loci in Paeonia lactiflora (Paeoniaceae) [J]. American Journal of Botany, 2011, 98(9): e242-e243.
    [36] LIU K, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
    [37] PRITCHARD J K,STEPHENS M,DONNELLY P. Inference of population structure from multilocus genotype data [J]. Genetics, 2000, 155: 945-959.
    [38] EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study [J]. Molecular Ecology, 2005, 14(8): 2611-2620.
    [39] BRADBURY P J, ZHANG Z, KROON D E, et al. TASSEL: software for association mapping of complex traits in diverse samples [J]. Bioinformatics, 2007, 23(19): 2633-2635.
    [40] 袁军辉. 紫斑牡丹及延安牡丹起源研究[D].北京: 北京林业大学, 2010.
    [41] BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.
    [42] 陆欢, 张丹, 章炉军, 等. 金针菇种质资源5个农艺性状与SSR 标记的关联分析[J]. 农业生物技术学报, 2015, 23(1): 96-106.
    [43] PALLE S R, SEEVE C M, ECKERT A J, et al. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms[J]. Tree Physiology, 2013, 33(7): 763-774.
    [44] HANSEN M, KRAFT T, GANESTAM S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetics Research, 2001, 77(1): 61-66.
    [45] 高颖, 罗双霞, 王彦华, 等. 大白菜抽薹开花时间与SSR和InDel标记的关联分析[J]. 园艺学报, 2012, 39(6): 1081-1089.
    [46] ARANZANA M J, KIM S, ZHAO K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genetics, 2005, 1(5): 531-539.
  • 加载中
计量
  • 文章访问数:  965
  • HTML全文浏览量:  119
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 刊出日期:  2016-08-31

目录

    /

    返回文章
    返回