• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

红松多酚与真菌多糖联合清除ABTS自由基活性比较

张乃珣, 尹红力, 赵鑫, 刘冉, 于美汇, 王振宇

张乃珣, 尹红力, 赵鑫, 刘冉, 于美汇, 王振宇. 红松多酚与真菌多糖联合清除ABTS自由基活性比较[J]. 北京林业大学学报, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527
引用本文: 张乃珣, 尹红力, 赵鑫, 刘冉, 于美汇, 王振宇. 红松多酚与真菌多糖联合清除ABTS自由基活性比较[J]. 北京林业大学学报, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527
ZHANG Nai-xun, YIN Hong-li, ZHAO Xin, LIU Ran, YU Mei-hui, WANG Zhen-yu. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides.[J]. Journal of Beijing Forestry University, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527
Citation: ZHANG Nai-xun, YIN Hong-li, ZHAO Xin, LIU Ran, YU Mei-hui, WANG Zhen-yu. Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides.[J]. Journal of Beijing Forestry University, 2016, 38(10): 104-111. DOI: 10.13332/j.1000-1522.20150527

红松多酚与真菌多糖联合清除ABTS自由基活性比较

基金项目: 

国家自然科学基金项目(GA13B202)、中央高校基本科研业务费专项(DL11BA18)。

详细信息
    作者简介:

    张乃珣,博士生。主要研究方向:植物资源开发利用。Email:zhangnaixun66@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院。
       责任作者: 王振宇,教授。主要研究方向:植物资源开发利用。Email:wzy219001@163.com 地址:150040 黑龙江省哈尔滨市黄河路73号尔滨工业大学二校区化工学院食品科学与工程系。

    张乃珣,博士生。主要研究方向:植物资源开发利用。Email:zhangnaixun66@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院。
       责任作者: 王振宇,教授。主要研究方向:植物资源开发利用。Email:wzy219001@163.com 地址:150040 黑龙江省哈尔滨市黄河路73号尔滨工业大学二校区化工学院食品科学与工程系。

Combined ABTS radical scavenging activity of Pinus koraiensis polyphenols with fungus polysaccharides.

  • 摘要: 本文比较了红松多酚(PKP)与黑木耳多糖(AAP)和灵芝孢子多糖(GLP)单一、联合使用清除ABTS自由基活性的作用。采用Chou-Talaly联合指数方法分析ABTS自由基清除实验结果,并对单一和联合使用的清除效果、联合指数(CI)、等效应图和剂量减少指数(DRI)进行分析评价。结果显示:单独使用红松多酚、黑木耳多糖、灵芝孢子多糖的IC50值分别为72.01 μg/mL、2.49 mg/mL、0.93 mg/mL,联合使用红松多酚和黑木耳多糖与红松多酚和灵芝孢子多糖(质量比为1∶3)后,IC50值分别为185.20和237.83 μg/mL。联合指数分析表明,从清除率10%到97%,红松多酚和黑木耳多糖的联合指数都小于1;等效应图显示联合使用红松多酚和黑木耳多糖使用剂量降低。剂量减少指数分析显示,从清除率5%到97%,红松多酚和黑木耳多糖的剂量减少指数都大于1,以上结果红松多酚和灵芝孢子多糖均表现不一致。说明红松多酚和黑木耳多糖之间存在协同清除ABTS自由基效应,但红松多酚和灵芝孢子多糖不存在。
    Abstract: We compared the ABTS radical scavenging activity of Pinus korsiensis polyphenols (PKP) alone or combined with Auricularia auricular polysaccharides (AAP) and Ganoderma lucidum spore polysaccharides (GLP). ABTS radical scavenging experiments and Chou-Talalay combination index (CI) method were used to evaluate the scavenging effects of PKP with AAP and GLP individually as well as in combination, and combination index (CI), isobologram and dose-reduction index (DRI) were worked out subsequently. It showed that IC50 values of PKP, AAP and GLP were 72.01 μg/mL, 2.49 mg/mL and 0.93 mg/mL, respectively, while IC50 values of the combination (mass ratio 1∶3) were 185.20 and 237.83 μg/mL, respectively. CI analysis indicated that the clearance rate was 10%-97%, and CI of PKP with AAP was less than 1. Dose of PKP with AAP was reduced based on isobologram. DRI analysis demonstrated that the clearance rate was 5%-97%, and DRI of PKP with AAP was greater than 1. The results of PKP with GLP were inconsistent. Our study suggests that the combination of PKP and AAP has significantly improved the ABTS radical scavenging activity, compared with using them individually.
  • [1]

    ZHANG N. Study on preparation and antioxidant activities of fractionation polysaccharide by alcohol in Auricularia auricula[D]. Harbin: Northeast Forestry University, 2011.

    [1]

    LECUMBERRI E, DUPERTUIS Y M, MIRALBELL R, et al. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy[J]. Clinical Nutrition, 2013, 32(6): 894-903.

    [2]

    FAN L S, GONG C R, ZHANG S H.Study on radio-protective effects of the polysaccharide from Auricular auricula in mice[J]. Acta Nutrimenta Sinica, 2005, 27(6): 525-526.

    [2]

    HUANG W W, TANG J S, LIN C F, et al. Pycnogenol induces differentiation and apoptosis in human promyeloid leukemia HL-60 cells[J]. Leukemia Research, 2005, 29(6): 685-692.

    [3]

    PENG Y J, LEE C H, WANG C C, et al. Pycnogenol attenuates the inflammatory and nitrosative stress on joint inflammation induced by urate crystals[J]. Free Radical Biology and Medicine, 2012, 52(4): 765-774.

    [3]

    JIAO Y L, WEN S N, DU B, et al. Effect of twin-screw extrusion conditions on polysaccharide extraction from Ganoderma lucidum spore powder[J]. Food Science, 2011, 32(16): 67-70.

    [4]

    KIM Y J, KIM Y A, YOKOZAWA T. Pycnogenol modulates apoptosis by suppressing oxidative stress and inflammation in high glucose-treated renal tubular cells[J]. Food and Chemical Toxicology, 2011, 49(9): 2196-2201.

    [4]

    WANG J Q, NIE S P, YU Q, et al. Immune modulation and antioxidation activity of polysaccharides from Ganoderma atrum in immunosuppressed mice[J]. Food Science, 2012, 33(23): 274-277.

    [5]

    GAO H L, LONG Y Z, JIANG X Q, et al. Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters[J]. Experimental Gerontology, 2013, 48(6): 572-578.

    [5]

    The Ministry of Agriculture of the Peoples Republic of China. Determination of crude mushroom polysaccharides:NY/T1676—2008[S]. Beijing: China Agriculture Press, 2008.

    [6]

    YANG Y S, AHN T H, LEE J C, et al. Protective effects of pycnogenol on carbon tetrachloride-induced hepatotoxicity in Sprague-Dawley rats[J]. Food and Chemical Toxicology, 2008, 46(1): 380-387.

    [6]

    The State Administration of Quality Supervision, Inspection and Quarantine of the Peoples Republic of China, China National Standardization Management Committee. Determination of total polyphenols and catechins content in tea: GB/T8313—2008[S]. Beijing: China Standard Press, 2008.

    [7]

    WANG Y F, LI L, XIE Z Z, et al.Study on antioxidant activity and synergistic effect of tea polyphenols and Panax quinquefolium[J]. China Foreign Medical Treatment, 2008, 27(29): 68.

    [7] 张宁. 黑木耳分级多糖制备及抗氧化研究[D]. 哈尔滨: 东北林业大学, 2011.
    [8]

    BAI H N, WANG Z Y, LI H, et al. Effect of five berry polyphenols and Auricularia auricular polysaccharides combination on radiation protection[J]. Science and Technology of Food Industry, 2013, 34(16): 117-120,124.

    [8] 樊黎生, 龚晨睿, 张声华. 黑木耳多糖抗辐射效应的动物实验[J]. 营养学报, 2005, 27(6): 525-526.
    [9]

    MA J W, QIAO Z Y, XIANG X. Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities[J]. Carbohydrate Polymers, 2011, 8: 1061-1068.

    [9]

    BAI H N, WANG Z Y, ZHANG H, et al. Study on synergistic effect of polyphenols and Auricularia auricular polysaccharides combination on antioxidant activity[J]. Science and Technology of Food Industry, 2013, 34(22): 124-127,134.

    [10]

    SHI M, YANG Y N, HU X S, et al. Effect of ultrasonic extraction conditions on antioxidative and immunomodulatory activities of a Ganoderma lucidum polysaccharide originated from fermented soybean curd residue[J]. Food Chemistry, 2014, 155: 50-56.

    [11]

    SUN X B, ZHAO C, PAN W, et al. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide[J]. Carbohydrate Polymers, 2015, 123: 283-287.

    [12]

    ZHU K X, NIE S P, LI C, et al. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia[[J]. International Journal of Biological Macromolecules, 2013, 57: 142-150.

    [13] 焦艳丽, 温升南, 杜冰, 等. 挤压处理灵芝孢子粉提取灵芝多糖[J]. 食品科学, 2011, 32(16): 67-70.
    [14]

    LI X L, ZHOU A G, LI X M. Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by γ-irradiation in rat liver mitochondria[J]. Carbohydrate Polymers, 2007, 69(1): 172-178.

    [15]

    JIA J, ZHANG X, HU Y S, et al. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats[J]. Food Chemistry, 2009, 115(1): 32-36.

    [16] 王君巧, 聂少平, 余强, 等. 黑灵芝多糖对免疫抑制小鼠的免疫调节和抗氧化作用[J]. 食品科学, 2012, 33(23): 274-277.
    [17]

    FIGUERO E, SOORY M, CERERO R, et al. Oxidant/antioxidant interactions of nicotine, coenzyme Q10, pycnogenol and phytoestrogens in oral periosteal fibroblasts and MG63 osteoblasts[J]. Steroids, 2006, 71(12): 1062-1072.

    [18] 中华人民共和国农业部. 食用菌中粗多糖含量的测定:NY/T1676—2008[S]. 北京: 中国农业出版社, 2008.
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶中茶多酚和儿茶素类含量的检测方法:GB/T8313—2008[S]. 北京: 中国标准出版社, 2008.
    [20]

    CHOU T C. Drug combination studies and their synergy quantification using the Chou-Talalay Method [J]. Cancer Res, 2010, 70(2): 440-446.

    [21]

    BOATH A S, STEWART D, MCDOUGALL G J. Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry[J]. Food Chemistry, 2012, 135(3): 929-936.

    [22] 王岳飞, 李磊, 谢争珍, 等. 茶多酚西洋参抗氧化活性比较及协同增效作用研究[J]. 中外医疗, 2008, 27(29): 68.
    [23] 白海娜, 王振宇, 李辉, 等. 五种浆果多酚与黑木耳多糖复合物的辐射防护作用[J]. 食品工业科技, 2013, 34(16): 117-120,124.
    [24] 白海娜, 王振宇, 张华, 等. 多酚类化合物与黑木耳多糖协同抗氧化作用研究[J]. 食品工业科技, 2013, 34(22): 124-127,134.
    [25]

    AMORATI R, FERRONI F, PEDULLI G F, et al. Modeling the co-antioxidant behavior of monofunctional phenols: applications to some relevant compounds[J]. The Journal of Organic Chemistry, 2003, 58: 9654-9658.

    [26]

    ROBERTS W G, GORDON M H. Determination of the total antioxidant activity of fruits and vegetables by a liposome assay[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 1486-1493.

    [27]

    JORGENSEN L V, MADSEN H L, THOMSEN M K, et al. Regeneration of phenolic antioxidants from phenoxyl radicals: an ESR and electrochemical study of antioxidant hierarchy[J]. Free Radical Research, 1999, 30(3): 207-220.

    [28]

    FERREIRA R D Q, GRECO S J, DELARMELINA M, et al. Electrochemical quantification of the structure/antioxidant activity relationship of flavonoids[J]. Electrochimica Acta, 2015, 163 (5): 161-166.

    [29]

    ZHANG H N, MA H L, LIU W, et al. Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarus[J]. Carbohydrate Polymers, 2014, 113: 380-387.

    [30]

    THAMBIRAJ S R, PHILLIPS M, KOYYALAMMUDI S R, et al. Antioxidant activities and characterisation of polysaccharides isolated from the seeds of Lupinus angustifolius[J]. Industrial Crops and Products, 2015, 74: 950-956.

  • 期刊类型引用(10)

    1. 王艺,刘思思,张彤赫,黄儒强. 高良姜多糖提取工艺的优化及抗氧化活性研究. 农产品加工. 2023(03): 34-38 . 百度学术
    2. 周佳悦,夏晓雨,候艳丽,王凡予,李芳菲,郭庆启. 不同发酵方式蓝莓果酒发酵过程中理化指标和抗氧化能力的动态变化. 中国酿造. 2023(05): 132-138 . 百度学术
    3. 杨丽婷,赵珊,李明玉,杨薇潼,郑志强,符群. 黑果腺肋花楸分级提取物成分分析及抗氧化活性比较. 食品工业. 2022(07): 129-134 . 百度学术
    4. 国田,张娜,符群,柴洋洋,郭庆启. 几种辅助提取方式对蓝莓原花青素浸提效果及抗氧化活性的影响. 北京林业大学学报. 2020(09): 139-148 . 本站查看
    5. 李珊,梁俭,冯群,刘真珍. 桂七青芒果皮多糖提取工艺的响应面优化及其体外抗氧化活性. 食品工业科技. 2019(04): 220-225+231 . 百度学术
    6. 高嘉敏,邓剑平,王一飞,王治平. 黄连与人参协同抗氧化活性的研究. 现代食品科技. 2019(06): 110-118+199 . 百度学术
    7. 曹叶霞,王泽慧,贺金凤,左鑫. 静乐黑枸杞多糖的提取及抗氧化性分析. 食品工业科技. 2019(14): 196-202 . 百度学术
    8. 夏晓雨,王凤娟,符群,张娜,郭庆启. 几种单元操作对蓝莓果汁饮料酚类物质含量及抗氧化活性的影响. 中南林业科技大学学报. 2019(11): 125-131 . 百度学术
    9. 姚佳,李世正,杜煜,侯鹏鹏. 大孔树脂分离纯化罗勒叶总黄酮及抗氧化活性研究. 食品研究与开发. 2018(20): 63-68 . 百度学术
    10. 黄娟,黄燕燕,刘冬梅,陈素芹,潘伟才. 响应面法优化多汁乳菇多糖提取工艺及抗氧化活性研究. 食品工业科技. 2017(11): 55-60 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  2034
  • HTML全文浏览量:  141
  • PDF下载量:  28
  • 被引次数: 20
出版历程
  • 收稿日期:  2015-12-29
  • 发布日期:  2016-10-28

目录

    /

    返回文章
    返回