高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据

鱼腾飞 冯起 司建华 张小由 赵春彦

鱼腾飞, 冯起, 司建华, 张小由, 赵春彦. 胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据[J]. 北京林业大学学报, 2017, 39(9): 8-16. doi: 10.13332/j.1000-1522.20160332
引用本文: 鱼腾飞, 冯起, 司建华, 张小由, 赵春彦. 胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据[J]. 北京林业大学学报, 2017, 39(9): 8-16. doi: 10.13332/j.1000-1522.20160332
YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. doi: 10.13332/j.1000-1522.20160332
Citation: YU Teng-fei, FENG Qi, SI Jian-hua, ZHANG Xiao-you, ZHAO Chun-yan. Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture[J]. Journal of Beijing Forestry University, 2017, 39(9): 8-16. doi: 10.13332/j.1000-1522.20160332

胡杨的夜间蒸腾——来自树干液流、叶片气体交换及显微结构的证据

doi: 10.13332/j.1000-1522.20160332
基金项目: 

国家自然科学基金项目 41271037

中国博士后科学基金 2014M560819

国家自然科学基金项目 31370466

国家自然科学基金项目 41401033

详细信息
    作者简介:

    鱼腾飞,博士,助理研究员。主要研究方向:干旱区生态水文学。Email:yutf@lzb.ac.cn  地址:730000 甘肃省兰州市东岗西路320号中国科学院西北生态环境资源研究院

  • 中图分类号: S718.43;S792.119

Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux, leaf gas exchange and stomatal microsturcture

  • 摘要: 不完全的气孔关闭引起的夜间蒸腾在不同物种和环境中普遍存在,且其大小与水汽压差和土壤水分有效性正相关,这意味着荒漠河岸林是研究夜间蒸腾的理想区域。本文基于木质部液流、叶片气体交换、显微结构及环境因子测定证实了胡杨夜间蒸腾的存在:1)夜间叶片气孔是不完全关闭的,平均气孔导度为45 mmol/(m2·s),远大于文献报道的杨属最小气孔导度(约为5 mmol/(m2·s)),平均蒸腾速率为0.7 mmol/(m2·s),两者分别占白天的26%和17%,这表明高的气孔导度和蒸腾速率主要是气孔开放引起;2)木质部平均液流速率白天为31.3 cm/h,夜间为16.5 cm/h,约为白天的53%,无论是白天还是夜间,液流速率与水汽压差均呈显著的对数关系,水汽压差可以解释55%的夜间液流变化,这表明夜间液流由蒸腾和组织补水两部分组成,因此,如何将夜间液流区分为夜间蒸腾和组织补水还有待进一步研究。午夜后液流速率的增加与木质部水势和径向生长变化是一致的,而与水汽压差是相反的,说明午夜后液流速率的增加是组织补水而非蒸腾。

     

  • 图  1  额济纳气象站1961—2012年日平均(Mean)、最高(Max.)、最低(Min.)气温(Ta)及相对湿度(RH)变化

    Figure  1.  Changes of daily mean, maximum, minimum air temperature (Ta) and relative humidity (RH) in 1961-2012 from Ejin Meteorological Station

    图  2  胡杨树干液流速率(Vs)及水汽压差(VPD)日变化

    2012年7月25—28日,图中阴影部分表示夜间。

    Figure  2.  Daily variation of sap flow velocity (Vs) of Populus euphratica and VPD

    The shaded area represent the night-time (25-28, July 2012).

    图  3  胡杨2012年生长季白天和夜间平均液流速率(Vs)变化及其与水汽压差(VPD)的关系

    Figure  3.  Variations of mean Vs of daytime and night-time and the relationship between Vs and VPD during the growing season in 2012 for P. euphratica

    图  4  胡杨叶片气孔导度(gs)和蒸腾速率(Tr)典型日变化(2014年7月17—18日,7月31日—8月1日和9月2—3日)

    Figure  4.  Typical daily variations of stomatal conductance (gs) and transpiration rate (Tr) of P. euphratica during July 17 to 18, July 31 to August 1 and September 2 to 3, 2014

    图  5  胡杨幼树白天和夜间叶片气孔显微结构变化(2015年7月1—2日)

    Figure  5.  Changes of leaf stomatal microstructure of P. euphratica at daytime and nighttime during July 1 to 2, 2015

    图  6  胡杨径向生长(Rd)、木质部水势(Ψs)与液流速率(Vs)的变化(2015年6月17—18日)

    a.径向生长Radial growth; b.木质部水势Stem water potential; c.液流速率Sap velocity

    Figure  6.  Changes of radial growth (Rd), stem water potential (Ψs) and sap velocity (Vs) of P. euphratica during June 17 to 18, 2015

    图  7  胡杨木质部蒸腾失水与组织补水关系

    红线为气孔导度;蓝线为蒸腾速率(Tr),包括白天蒸腾(Ed)和夜间蒸腾(En);绿线为组织补水(Refilling, Re)。下图箭头大小代表蒸腾失水与组织补水的相对值。

    Figure  7.  Relationship between transpiration and tissue refilling for the xylem of P. euphratica

    In which red line is stomatal conductance, blue line is transpiration (Tr), including daytime transpiration (Ed) and night-time transpiration (En), and green line is tissue refilling (Re). The size of arrow below represent the relative magnitude of Tr and Re.

    表  1  试验期内额济纳站气象要素变化

    Table  1.   Changes in meteorological factors in Ejin Meteorological Station during experiment period

    年份
    Year
    降水量
    Precipitation (P)/mm
    日照时间
    Sunshine duration(N)/h
    气温
    Air temperature(Ta)/℃
    相对湿度
    Relative humidity(RH)/%
    水汽压差
    Vapor pressure difference (VPD)/kPa
    风速
    Wind speed(U)/(m·s-1)
    201232.78.77±3.049.44±14.4727.72±12.231.66±1.272.60±1.09
    201417.28.33±3.1510.55±13.3030.16±12.141.70±1.212.63±1.11
    201544.48.63±3.0710.66±12.7832.05±14.581.71±1.222.68±1.11
    Sig.NoNoYesNoNo
    下载: 导出CSV
  • [1] RAWSON H M, CLARKE J M. Nocturnal transpiration in wheat[J]. Australian Journal of Plant Physiology, 1988, 15: 397-406.
    [2] CAIRD M A, RICHARDS J H, DONOVAN L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007, 143(1): 4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001681649
    [3] SNYDER K A, RICHARDS J H, DONOVAN L A. Night-time conductance in C3 and C4 species: do plants lose water at night?[J]. Journal of Experiment Botany, 2003, 54: 861-865. doi: 10.1093/jxb/erg082
    [4] DAWSON T E, BURGESS S S O, TU K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007, 27: 561-575. doi: 10.1093/treephys/27.4.561
    [5] OGLE K, LUCAS R W, BENTLEY L P, et al. Differential daytime and night-time stomatal behavior in plants from North American deserts[J]. New Phytologist, 2012, 194(2): 464-476. doi: 10.1111/j.1469-8137.2012.04068.x
    [6] MOORE G W, CLEVERLY J R, OWENS M K. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements[J]. Tree Physiology, 2008, 28: 521-528. doi: 10.1093/treephys/28.4.521
    [7] HOWARD A R, DONOVAN L A. Soil nitrogen limitation does not impact nighttime water loss in Populus[J]. Tree Physiology, 2010, 30(1): 23-31. https://www.ncbi.nlm.nih.gov/pubmed/19959599
    [8] DAMIÁN C, MARÍA A E, VICTOR J L, et al. Populus species from diverse habitats maintain high night-time conductance under drought[J]. Tree Physiology, 2016, 36(2): 229-242. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84d9f60cc24ba0df2777b42dce988b40
    [9] YU T F, FENG Q, SI J H, et al. Tamarix ramosissima stand evapotranspiration and its association with hydroclimatic factors in an arid region in northwest China[J]. Journal of Arid Environments, 2017, 138: 18-26. doi: 10.1016/j.jaridenv.2016.11.006
    [10] 司建华, 冯起, 鱼腾飞, 等.植物夜间蒸腾及其生态水文效应研究进展[J].水科学进展, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017

    SI J H, FENG Q, YU T F, et al. Research advances in nighttime transpiration and its eco-hydrological implications[J]. Advances in Water Science, 2014, 25(6): 907-914. http://d.old.wanfangdata.com.cn/Periodical/skxjz201406017
    [11] NADEZHDINA N. Sap flow index as an indicator of plant water status[J]. Tree Physiology, 1999, 19: 885-891. doi: 10.1093/treephys/19.13.885
    [12] BURGESS S S O, ADAMS M A, TURNER N C, et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants[J]. Tree Physiology, 2001, 21: 589-598. doi: 10.1093/treephys/21.9.589
    [13] ZEPPEL M J, LEWIS J D, MEDLYN B, et al. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna[J]. Tree Physiology, 2011, 31(9): 932-944. doi: 10.1093/treephys/tpr024
    [14] PHILLIPS N G, LEWIS J D, LOGAN B A, et al. Inter- and intra-specific variation in nocturnal water transport in Eucalyptus[J]. Tree Physiology, 2010, 30: 586-596. doi: 10.1093/treephys/tpq009
    [15] YU T F, FENG Q, SI J H, et al. Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China's extremely arid region[J]. Plant and Soil, 2013, 372: 297-308. doi: 10.1007/s11104-013-1727-8
    [16] IPCC. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
    [17] 鱼腾飞, 冯起, 司建华, 等.胡杨根系水力再分配的模式、大小及其影响因子[J].北京林业大学学报, 2014, 36(2): 22-29. http://j.bjfu.edu.cn/article/id/9977

    YU T F, FENG Q, SI J H, et al. Patterns, magnitude and controlling factors of hydraulic redistribution by Populus euphratica roots[J]. Journal of Beijing Forestry University, 2014, 36(2) 22-29. http://j.bjfu.edu.cn/article/id/9977
    [18] ALLEN R G, PEREIRA L S, RAES D. Crop evapotranspiration: guidelines for computing crop water requirements: FAO irrigation and drainage paper 56[C]. Rome: FAO, 1998.
    [19] YANG Y T, GUAN H D, HUTSON J L, et al. Examination and parameterization of the root water uptake model from stem water potential and sap flow measurements[J]. Hydrological Processes, 2013, 27: 2857-2863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/hyp.9406
    [20] 赵传燕, 赵阳, 彭守璋, 等.黑河下游绿洲胡杨生长状况与叶生态特征[J].生态学报, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007

    ZHAO C Y, ZHAO Y, PENG S Z, et al. The growth state of Populus euphratica Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518-4525. http://d.old.wanfangdata.com.cn/Periodical/stxb201416007
    [21] BURGESS S S O, DAWSON T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration[J]. Plant, Cell and Environment, 2004, 27: 1023-1034. doi: 10.1111/j.1365-3040.2004.01207.x
    [22] GOLDSMITH G R. Changing directions: the atmosphere-plant-soil continuum[J]. New Phytologist, 2013, 199(1): 4-6. doi: 10.1111/nph.12332
    [23] DALEY M J, PHILLIPS N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiology, 2006, 26: 411-419. doi: 10.1093/treephys/26.4.411
    [24] GOLDSTEIN G, ANDRADE J L, MEINZER F C, et al. Stem water storage and diurnal patterns of water use in tropical forest[J]. Plant, Cell and Environment, 1998, 21: 397-406. doi: 10.1046/j.1365-3040.1998.00273.x
    [25] WANG H, ZHAO P, WANG Q, et al. Nocturnal sap flow characteristics and stem water recharge of Acacia mangium[J]. Frontiers of Forestry in China, 2008, 3(1): 72-78. doi: 10.1007/s11461-008-0005-z
    [26] OREN R, PHILLIPS N G, EWERS B E, et al. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest[J]. Tree Physiology, 1999, 19: 337-347. doi: 10.1093/treephys/19.6.337
    [27] PHILLIPS N G, RYAN M G, BOND B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003, 23: 237-245. doi: 10.1093/treephys/23.4.237
    [28] KAVANAGH K L, PANGLE R P, SCHOTZKO A D. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J]. Tree Physiology, 2007, 27: 621-629. doi: 10.1093/treephys/27.4.621
    [29] HOGG E H, HURDLE P A. Sap flow in trembling aspen implications for stomatal responses to vapor pressure deficit[J]. Tree Physiology, 1997, 17: 501-509. doi: 10.1093/treephys/17.8-9.501
    [30] BENYON R G. Nighttime water use in an irrigated Eucalyptus grandis plantation[J]. Tree Physiology, 1999, 19: 853-859. doi: 10.1093/treephys/19.13.853
    [31] ALVARADO-BARRIENTOS M S, HOLWERDA F, GEISSERT D R, et al. Nighttime transpiration in a seasonally dry tropical montane cloud forest environment[J]. Trees, 2014, 29(1): 259-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9c209cebdb64fb217cb137aafdff8d3
    [32] BUCKLEY T N, TURNBULL T L, PFAUTSCH S, et al. Nocturnal water loss in mature subalpine Eucalyptus delegatensis tall open forests and adjacent E. pauciflora woodlands[J]. Ecology Evolution, 2011, 1(3): 435-450. doi: 10.1002/ece3.44
    [33] 徐世琴, 吉喜斌, 金博文.西北干旱区典型固沙植物夜间耗水及其影响因素[J].西北植物学报, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022

    XU S Q, JI X B, JIN B W. Nighttime water use and its influencing factors for typical sand binding plants in the arid region of northwest China[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(7): 1443-1450. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201507022
    [34] 王艳兵, 德永军, 熊伟, 等.华北落叶松夜间树干液流特征及生长季补水格局[J].生态学报, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005

    WANG Y B, DE Y J, XIONG W, et al. The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2013, 33(5): 1375-1385. http://d.old.wanfangdata.com.cn/Periodical/stxb201305005
    [35] 周翠鸣, 赵平, 倪广艳, 等.广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献[J].应用生态学报, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003

    ZHOU C M, ZHAO P, NI G Y, et al. Water recharge through nighttime stem sap flow of Schima superba in Guangzhou Region of Guangdong Province, South China: affecting factors and contribution to transpiration[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1751-1757. http://d.old.wanfangdata.com.cn/Periodical/yystxb201207003
    [36] 尹立河, 黄金廷, 王晓勇, 等.陕西榆林地区旱柳和小叶杨夜间树干液流变化特征分析[J].西北农林科技大学学报(自然科学版), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014

    YIN L H, HUANG J T, WANG X Y, et al. Characteristice of nighttime sap flow of Salix matsudana and Populus simonii in Yulin, Shaanxi[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(8): 85-90. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201308014
    [37] 赵春彦, 司建华, 冯起, 等.胡杨(Populus euphratica)树干液流特征及其与环境因子的关系[J].中国沙漠, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014

    ZHAO C Y, SI J H, FENG Q, et al. Xylem sap flow of Populus euphratica in relation to environmental factors in the lower reaches of Heihe River[J]. Journal of Desert Research, 2014, 34(3): 718-724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201403014
    [38] 司建华, 冯起, 张小由, 等.极端干旱区荒漠河岸林胡杨生长季树干液流变化[J].中国沙漠, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016

    SI J H, FENG Q, ZHANG X Y, et al. Sap flow of Populus euphratica in desert riparian forest in extreme arid region during the growing season[J]. Journal of Desert Research, 2007, 27(3): 442-447. doi: 10.3321/j.issn:1000-694X.2007.03.016
    [39] FISHER J B, BALDOCCHI D D, MISSON L, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007, 27: 597-610. doi: 10.1093/treephys/27.4.597
    [40] RESCO DE DIOS V, DIAZ-SIERRA R, GOULDEN M L, et al. Woody clockworks: circadian regulation of night-time water use in Eucalyptus globulus[J]. New Phytologist, 2013, 200(3): 743-752. doi: 10.1111/nph.12382
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1080
  • HTML全文浏览量:  251
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-20
  • 修回日期:  2017-01-16
  • 刊出日期:  2017-09-01

目录

    /

    返回文章
    返回