Origin identification of 2n female gamete of Populus tomentosa triploid hybrids
-
摘要: 由于受杨树大孢子母细胞减数分裂不同步性影响,通过施加理化处理诱导杨树大孢子染色体加倍授粉杂交获得的三倍体,可能既包括来源于第一次减数分裂核复原形成的2n雌配子(FDR),也有来源于第二次减数分裂核复原形成的2n雌配子(SDR),难以进行表型鉴别,而通过分子标记分析可以实现不同类型2n雌配子的区分。本研究以通过高温诱导毛白杨大孢子染色体加倍所获得的87株三倍体及其亲本为材料,从母本杂合且与父本有差异的SSR多态性引物中,筛选出5对适宜于2n配子诱导途径来源鉴定的重组率较低的SSR分子标记。在此基础上,利用这5对低重组率SSR分子标记,开展毛白杨杂种三倍体的2n雌配子诱导途径来源分析。结果表明,不同毛白杨杂种三倍体的2n雌配子相应简单重复序列区域的等位基因配置不同,利用筛选出的5对低重组率SSR标记可以实现毛白杨杂种三倍体的2n雌配子诱导途径鉴定,其中35株三倍体来源于FDR型2n配子,另52株来源于SDR型2n配子。此外,选用5个位于高重组率位点的SSR引物进行检测分析,结果验证了随机挑选的SSR引物用于鉴别结果是不完全可靠的,只有挑选低重组率的SSR位点才可能准确鉴定2n配子来源。开展毛白杨杂种三倍体的2n配子诱导途径鉴定研究,对于FDR、SDR不同形成途径的2n配子传递亲本杂合性分析,以及毛白杨三倍体育种策略制定等具有重要意义。Abstract: Due to the asynchronism during the process of megaspore mother cell meiosis, triploid poplars which were induced by chromosome doubling of megaspores through physical or chemical treatment could be either derived from the first-division restitution (FDR) or the second-division restitution (SDR). And it is difficult to identify the origin of the obtained triploids through their phenotypes. However, molecular marker analysis provides an efficient way to identify the origin of 2n female gametes. In this study, 87 triploid Populus tomentosa hybrids were induced by chromosome doubling of megaspores through high temperature treatment. Using these 87 triploids and their parents as material, five appropriate primers (female parent has heterozygous alleles which are different with alleles of male parent) with low recombination rate were selected to avoid the impact of homologous recombination on identifying the origin of 2n gametes. Based on these five SSR primers, results were shown that relative allele configurations at SSR loci of 2n female gametes in different triploids were inconsistent. Using the selected five SSR markers with low recombination rate, we identified the origin of 2n gametes of P. tomentosa triploid hybrids. It was shown that 35 triploids were originated from FDR 2n gametes, and the other 52 triploids were originated from SDR 2n gametes. Otherwise, five SSR primers with high recombination frequencies were detected and analyzed. The results confirmed that the randomly selected SSR primers used for the identification of origin were not completely reliable, only the SSR loci with low recombination frequencies can be used to identify the origin of 2n gametes accurately. The identification study of the origin of 2n gametes of triploid P. tomentosa is of great importance for the heterozygosity analysis of FDR and SDR 2n gametes, as well as the breeding strategy establishment for triploid P. tomentosa.
-
Keywords:
- Popolus tomentosa /
- 2n female gamete /
- chromosome doubling /
- FDR /
- SDR
-
杨树多倍体育种实践表明,杨树异源三倍体在生长、材质和抗性等性状方面表现突出[1-7]。三倍体可以通过二倍体与四倍体杂交或者利用未减数配子杂交获得[8-9]。在植物大小孢子发生过程中,减数分裂第一阶段和第二阶段的异常和人工诱变都可能产生2n配子,它们分别被称作第一次减数分裂核复原(first-division restitution,FDR)和第二次减数分裂核复原(second-division restitution,SDR)[10]。据已有研究的结果显示,FDR型2n配子传递亲本杂合性的能力是SDR型2n配子的两倍[11-14]。其差异产生的原因是由于同源重组所致[15]。因此,FDR型2n配子和SDR型2n配子在育种应用和理论研究方面应有所不同,准确鉴别2n配子的诱导途径十分必要。
共显性分子标记常被用于评估等位基因上的遗传组成,其中简单重复序列(Simple sequence repeat,SSR)是一种常用的共显性标记[16-17]。但是以往的研究多运用少数随机的SSR标记去评估2n配子来源[18-19],导致判别结果产生一定的误差。因为,在减数第一次分裂前期,DNA双链断裂(double-strand breaks,DSBs)触发同源重组,由于酶切方式不同,最终有可能形成交叉互换(crossing over,CO),也有可能未形成交叉互换(noncrossing over,NCO),但两条非姐妹染色单体都会产生异源双链DNA(heteroduplex DNA,hDNA)区域[20-22]。因此,如果同源重组发生并且在一个SSR位点上产生交换,那么本属于FDR型2n配子的三倍体,其的等位基因有50%的可能性显示为SDR型2n配子,而本属于SDR型2n配子的三倍体,其等位基因则100%显示为来源于FDR型2n配子[23]。所以,少量的随机SSR位点并不能用于准确判断杂种三倍体2n配子的来源,应该使用大量、随机SSR位点或选择少数低重组率SSR位点应用于检测。根据Dong等[15]研究可知,杨树hDNA频率与SSR位点距着丝粒位置呈正相关,即SSR位点距着丝粒距离越近,重组率越低,可根据SSR位点距着丝粒的位置,选择较低重组率的SSR位点进行鉴定。
本研究主要针对前期高温诱导毛白杨大孢子染色体加倍获得的部分三倍体的2n配子诱导途径鉴定问题,探讨利用SSR分子标记准确判别2n配子形成途径的检测方法,包括如何选择低重组率SSR引物,以及大孢子染色体加倍获得的FDR型和SDR型2n雌配子来源的异源三倍体形成途径的准确鉴定等,为进一步开展毛白杨2n配子传递亲本杂合性分析,以及毛白杨多倍体育种策略制定等奠定基础。
1. 材料与方法
1.1 材料
本实验室在前期以结实率较高的毛白杨(Populus tomentosa)无性系‘3119’作母本,银腺杨(Populus alba×P. glandulosa)无性系YX1作父本,在授粉前12 h选用39和42 ℃恒温箱中持续处理2和4 h,利用高温诱导大孢子染色体加倍,经过种内杂交获得了87株杂种三倍体。
1.2 方法
1.2.1 基因组DNA的提取
选取以毛白杨‘3119’为母本,银腺杨‘YX1’为父本,经大孢子染色体加倍并杂交获得的87株三倍体后代的嫩叶样本300 mg,采用天根生化科技(北京)有限公司的植物基因组DNA提取试剂盒,根据试剂盒具体操作步骤进行DNA的提取。
1.2.2 荧光标记的TP-M13-SSR PCR
根据荧光标记的TP-M13-SSR PCR的方法[24],PCR扩增体系里需要3种引物,包括5′尾端接有M13序列(5′-TGTAAAACGACGGCCAGT-3′)的上游引物,普通的下游引物,通用的具有荧光标记(FAM、HEX、TAMRA、ROX等)的M13引物,具体PCR体系见表 1。PCR程序如下:94 ℃ 5 min;94 ℃ 30 s,60~50 ℃,每30 s降1 ℃,72 ℃ 30 s共11个循环;94 ℃ 30 s,50 ℃ 30 s,72 ℃ 30 s共20个循环;94 ℃ 30 s,53 ℃ 30 s,72 ℃ 30 s共8个循环;72 ℃ 7 min,4 ℃保存。
表 1 PCR扩增反应体系配置表Table 1. Configuration of PCR reaction system成分
Configuration体积
Volume/μL无菌ddH2O Sterile double distilled water 7.20 模板DNA DNA mould 2.00 5′端接有M13序列的上游引物Forward primer with an universal primer M13 tail at the 5′end 0.08 下游引物Reverse primer 0.32 荧光引物(ROX,FAM,TAMRA,HEX) Fluorescently labeled primer(ROX,FAM,TAMRA,HEX) 0.40 PCR Mix 10.00 总体系Total system 20.00 1.2.3 SSR分析
本研究使用的SSR引物信息来源于the Populus Molecular Genetics Cooperative (GCPM,PMGC引物)及the Oak Ridge National Laboratory (ORPM引物),所有引物(5′尾端接有M13序列的上游引物,下游引物及通用的M13磷荧光标记引物)由北京睿博兴科有限公司进行合成。PCR产物委托睿博新科生物科技(北京)有限公司在ABI-3730XL基因分析仪上进行测试,其结果应用GeneMarker V2.20软件进行读取及分析。
应用以上引物,首先筛选出适宜毛白杨鉴定的多态性SSR标记,以母本毛白杨‘3119’与父本银腺杨‘YX1’的DNA为模板进行TP-M13-SSR PCR,筛选在母本中处于杂合状态且与父本有差异的SSR多态性引物。在此基础上,为准确鉴定大孢子染色体加倍获得的2n雌配子的形成途径,应用染色体着丝粒附近,具有低重组率的标记,进行三倍体遗传组成的分析,通过所获得杂种三倍体的等位基因配置信息,判别毛白杨杂种三倍体的2n配子诱导途径。
1.2.4 2n配子来源鉴定的依据及标准
采用筛选出的适于毛白杨2n配子来源鉴定的多态性SSR引物进行鉴定时,母本2n配子的SSR特异标记可显示为杂合的ab型或纯合的aa或bb型。其中将杂合的ab型记为F型等位基因配置,纯合的aa或bb型记为S型等位基因配置。由Dong等[25]研究可知,青杨(Populus pseudo-simmii)FDR型2n配子传递亲本平均杂合度为74.80%,而SDR型2n配子分别传递亲本平均杂合度为39.58%。该结果也与其他植物中不同类型2n配子传递亲本杂合度研究相似[13-14, 26-27]。以此为根据,筛选多态性符合要求且重组率低的5对SSR引物,分析每个引物位点的信息进行判定。若3个或3个以上的SSR位点显示母本杂合等位基因信息,则判定该异源三倍体植株源自FDR型2n雌配子;如3个或3个以上的SSR位点显示纯合母本等位基因信息,则判定该异源三倍体源自SDR型2n雌配子。
2. 结果与分析
2.1 适于毛白杨2n配子诱导途径鉴定的SSR引物筛选
采用SSR分子标记鉴定2n配子诱导途径,筛选的SSR多态性引物首先应满足母本毛白杨‘3119’杂合且与父本银腺杨‘YX1’有差异的基本条件。经毛细管电泳检测,于633对引物中筛选得到26对SSR多态性符合要求的引物,其多态性位点距着丝粒距离与所在臂长之比介于10.79%~99.07%之间。在此基础上,进一步筛选适宜于毛白杨2n配子诱导途径来源鉴定的重组率较低的SSR分子标记,以避免同源重组对2n配子形成途径判别的影响。为此,在初步筛选获得的26个多态性标记中,将每对SSR引物序列通过BLAST搜索与毛果杨基因组Populus trichocarpav3.0(Phytozome v8.0; http://www.phytozome.net)进行对比,确定SSR标记在所在染色体上的准确位置,并与着丝粒位置关联,以超高密度遗传图谱所确定的着丝粒区域为判别依据[28]。最终选取了多态性位点所在位置距着丝粒的距离与所在臂长比值最小的5对SSR引物,比值介于10.79%~30.78%之间,这5对SSR分子标记分别位于第10、11、13、14、18染色体上(表 2)。由于这5对SSR引物位于着丝粒附近,受同源重组影响较小,利于毛白杨大孢子染色体加倍的2n配子诱导途径的准确鉴定。
表 2 适合毛白杨2n配子诱导途径鉴定的低重组率多态性SSR位点信息Table 2. Information of SSR loci with low recombination frequencies标记名称
Marker所在染色体
Chromosome
No.重复单元
Repeat
motif引物序列(5′→3′)
Primer sequence
(5′→3′)检测等位基因
Detected allele/bp位点距着丝粒距离与
所在臂长之比
Ratio of distance from
centromere of loci to
chromosome arm length/%母本
Female
parent父本
Male
parentGC_1153 11 CTT 上游Forward TTCCTTTCACACAATGACAA 178/181 172/175 10.79 下游Reverse TTTAAAAACTGGGTCCGTAA GC_1175 14 CTT 上游Forward TCATCAACCTGACCTCTACC 191/210 194/197 10.80 下游Reverse CAAAGCAAAAACAAACACAA GC_1577 18 TA 上游Forward GAGAACATGTCAGCAGTTCA 238/242 234/240 16.44 下游Reverse GCTTAAACATTGAGAAAGCG GC_1120 10 TAA 上游Forward TGCAAATCCAAACACAGATA 237/261 228/231 25.41 下游Reverse ACGAATCATCTTACGCACTT GC_1390-1 13 CA 上游Forward CAAGAACGGTAAAATGCTTC 244/276 239/253 30.78 下游Reverse TCCATTTTCCAAATCCTAAA 2.2 大孢子染色体加倍来源的毛白杨杂种三倍体形成途径鉴定
应用筛选出的5对SSR引物对大孢子染色体加倍来源的毛白杨杂种三倍体形成途径进行鉴定。发现每对SSR引物在三倍体子代植株中均可检测到F或S两种基因配置类型,其中在F型基因配置中,所有在该位点的母本杂合信息均保留在三倍体子代中;而在S型基因配置中,母本在该位点的杂合信息中只有1个基因通过复制后保留至三倍体子代中(图 1)。
图 1 毛白杨杂种三倍体SSR毛细管电泳分析亲本及三倍体子代植株在5对SSR位点处检测到的毛细管电泳结果。母本‘3119’及父本‘YX1’在所有位点多态且父、母本间没有相同等位基因,a、b、c、d代表父、母本的SSR位点所检测到的不同等位基因。异源三倍体植株的等位基因配置分为F型与S型两种类型,在F型中,母本所有杂合等位基因全部传递至三倍体中;在S型中,母本杂合等位基因中的1个以2倍剂量传递至三倍体中。GCPM_1577、GCPM_1120、GCPM_1153、GCPM_1390-1、GCPM_1175为研究中所应用的5对低重组率SSR引物。Figure 1. Allelic configurations of the triploid hybridsResults of capillary electrophoresis for the five SSR markers were detected in two parents and triploid hybrids. Both female parent '3119' and male parent 'YX1' were heterozygous and two distinct alleles were detected at all loci. 'a', 'b', 'c', 'd' present different alleles detected at SSR loci of parents.The allelic configurations of the triploid hybrids were divided into two types, which were previously named F type and S type. In the F type allelic configuration, both female parent 3119 alleles were transmited to the triploid hybrid, whereas only one of two female parent 3119 alleles was transmited to the triploid hybrid in the S type allelic configuration. GCPM_1577、GCPM_1120、GCPM_1153、GCPM_1390-1、GCPM_1175 were the SSR primers applied in this study with low recombination rate.对于大孢子染色体加倍获得的87株毛白杨杂种三倍体而言,一些植株在5个低重组率SSR位点的等位基因配置类型并不一致。根据其在5个SSR位点处F和S型基因配置的个数,将所有毛白杨三倍体植株分为6类,分别命名为5F0S、4F1S、3F2S、2F3S、1F4S和0F5S型三倍体。5F0S类型为5个位点中有5个显示为F型等位基因配置、0个显示为S型等位基因配置的三倍体,4F1S类型为5个位点中,4个显示为F型等位基因配置、1个显示为S型等位基因配置的三倍体,剩余4类依此类推。由于我们选用的5对SSR标记具有较低的重组率,即SSR位点发生等位基因遗传配置改变的可能性很低,5个SSR标记位点上多个位点同时发生基因转换的可能性更低,因此发生FDR及SDR类型转换的情况更少,2n配子来源鉴定更准确。故我们认为,5F0S、4F1S、3F2S型三倍体均源于FDR型2n配子,而2F3S、1F4S和0F5S型三倍体均源于SDR型2n配子。
最终经统计,在87株以下异源三倍体中,35株三倍体来自FDR型2n配子,其余52株源自SDR型2n配子。
表 3 大孢子染色体加倍来源的毛白杨三倍体SSR分子标记鉴定Table 3. Genetic composition of the 87 Populus tomentosa triploids analyzed by 5 SSR markers with low hDNA frequencies2n配子类型2n gamete type 基因配置类型Gene configuration 三倍体数Number of triploids 株数Total number FDR 5F0S 1 35 4F1S 9 3F2S 25 SDR 2F3S 24 52 1F4S 18 0F5S 10 2.3 引物选择对毛白杨2n配子诱导途径鉴定的影响
为了验证同源重组对毛白杨2n配子诱导途径鉴定的影响,以采用5个低重组率SSR引物鉴定确认的10个1F5S型的毛白杨杂种三倍体为材料,选用5个位于高重组率位点的SSR引物(表 4)进行验证性检测分析。研究结果表明,对于10株通过低重组率SSR引物确定源自SDR型2n配子的1F5S型毛白杨三倍体,在检测的SSR分子标记位点处均只有1个位点显示为F型等位基因配置;但采用5个高重组率SSR引物鉴定,则显示在检测的SSR分子标记位点处分别有2~5个位点显示为F型等位基因配置,其中只有2株毛白杨三倍仍源自SDR型2n配子(表 5)。该结果验证了随机挑选的SSR引物用于鉴别结果是不完全可靠的,只有挑选低重组率的SSR位点才可能用于相对准确分析三倍体等位基因的遗传组成,进而准确鉴定2n配子来源。
表 4 高重组率多态性SSR位点具体信息Table 4. Information of SSR loci with high recombination frequencies标记名称
Marker所在染色体
Chromosome No.重复单元
Repeat motif引物序列(5′→3′)
Primer sequence
(5′→3′)检测等位基因
Detected allele/bp位点距着丝粒距离与
所在臂长之比
Ratio of distance from
centromere of loci to
chromosome arm length/%母本
Female
parent父本
Male
parentGCPM_2615 6 CTTT 上游Forward ATGTCAACGTCACTGACAAA 230/238 228/235 99.07 下游Reverse ATTAGGCAATGCAGAACACT GCPM_3310-1 8 GAG 上游Forward GCCTCATCATGCTTCTAAAC 222/228 231/237 86.41 下游Reverse CATGAACCTTCCACCATTAT GCPM_1418-1 16 CT 上游Forward GTACACTCAGCTGTGGTCCT 204/216 230/238 95.50 下游Reverse TGGGAGTCATGAAATCTACC ORPM_422 1 TAA 上游Forward TGCAAATCCAAACACAGATA 222/234 218/232 81.36 下游Reverse ACGAATCATCTTACGCACTT GCPM_719 15 AG 上游Forward AAAGTTATGCTTCAAGCCAG 211/239 207/227 80.57 下游Reverse AAGGGTTGCAACTTTTCATA 表 5 SDR型(1F5S)三倍体在高重组率SSR位点的等位基因组成Table 5. Allelic configurations of SDR triploids at the SSR loci with high recombination frequencies三倍体Triploid GCPM_2615 GCPM_3310 GCPM_1418-1 ORPM_422 GCPM_719 SDR-1 Ho He He Ho Ho SDR-2 He He He Ho He SDR-3 He He He He He SDR-4 He He He He He SDR-5 He He He He He SDR-6 He He He He He SDR-7 He Ho Ho He Ho SDR-8 Ho He He He He SDR-9 He He Ho He He SDR-10 He He Ho He He 注:He代表杂合型;Ho代表纯合型。Note: He, heterozygous; Ho, homozygous. 3. 结论与讨论
Ferrante等[18]研究证明了基于SSR位点的共显性表达是测定等位基因组成及多倍体植株来源的可靠方法。实际这种方法并不能解决重组带来的影响。如果一个随机选择的SSR分子标记被用于评估杂种三倍体的遗传组成,并且这个SSR位点发生了同源重组,则将获得相反的结果。例如,在本研究中采用5个低重组率SSR引物鉴定确认的10个1F5S型的毛白杨杂种三倍体,在采用5个高重组率SSR引物鉴定时,其中有8株毛白杨三倍被判定为源自FDR型2n配子,只有2株毛白杨三倍仍判定为源自SDR型2n配子。对于一些杂种三倍体,由于同源重组的影响,2n配子在不同位点上等位基因组成与亲本并不一致,这个结果与Dong等[23]有关青杨杂种三倍体2n配子来源鉴定的研究结果相同。为了减少同源重组对检测杂种多倍体中染色体组来源的影响,保证鉴定结果的准确性,需应用大量随机SSR引物或少量低重组率SSR引物用于检测。Xi等[29]利用了来自19个连锁群的21对SSR随机引物检测美洲黑杨(P.×euramericana)杂种三倍体2n雌配子的形成机制,来源于不同连锁群的随机引物并不能减小同源重组对鉴定结果的影响。相对于选择利用大量随机SSR引物进行分析,采用低重组率的SSR分子标记来评估杂种多倍体的遗传组成会更加准确,并且可节省人力、物力。在本研究中,作为研究对象的87株三倍体是施加高温处理诱导毛白杨大孢子染色体加倍得到的,鉴定结果显示在毛白杨无性系‘3119’与银腺杨无性系‘YX1’杂交后所得的杂种三倍体来源于FDR型和SDR型2n雌配子,说明在毛白杨的减数第一次分裂和减数第二次分裂过程中,高温处理都能够有效诱导2n雌配子。但在本研究中所获得的87株杂种三倍体中,有52株三倍体来源于SDR型2n配子,多于源自FDR型2n配子的35株三倍体,推测可能是由于毛白杨‘3119’的雌花芽在施加高温处理时处于较晚发育阶段,处于减数第二次分裂时期比减数第一次分裂时期的花芽数量更多的缘故。
杨树杂种三倍体营养生长表现突出[2-3, 6-7, 30]。鉴于杨树三倍体在材积生长等遗传改良方面的优势,人工诱导多倍体技术研究进展迅速,在白杨派(Sect. Populus)、青杨派(Sect. Tacamahaca)杨树中已经成功地建立了一套人工诱导配子染色体加倍的有性多倍化途径选育三倍体技术体系[31-36]。由于FDR和SDR型2n配子传递亲本杂合性的差异,其应用应该有所不同,准确鉴定育种中获得的杂种三倍体的基因组成及2n配子形成机制十分重要。本研究所利用的低重组率引物的检测方法,也可用于检测其他树种的遗传组成及2n配子形成机制。
-
图 1 毛白杨杂种三倍体SSR毛细管电泳分析
亲本及三倍体子代植株在5对SSR位点处检测到的毛细管电泳结果。母本‘3119’及父本‘YX1’在所有位点多态且父、母本间没有相同等位基因,a、b、c、d代表父、母本的SSR位点所检测到的不同等位基因。异源三倍体植株的等位基因配置分为F型与S型两种类型,在F型中,母本所有杂合等位基因全部传递至三倍体中;在S型中,母本杂合等位基因中的1个以2倍剂量传递至三倍体中。GCPM_1577、GCPM_1120、GCPM_1153、GCPM_1390-1、GCPM_1175为研究中所应用的5对低重组率SSR引物。
Figure 1. Allelic configurations of the triploid hybrids
Results of capillary electrophoresis for the five SSR markers were detected in two parents and triploid hybrids. Both female parent '3119' and male parent 'YX1' were heterozygous and two distinct alleles were detected at all loci. 'a', 'b', 'c', 'd' present different alleles detected at SSR loci of parents.The allelic configurations of the triploid hybrids were divided into two types, which were previously named F type and S type. In the F type allelic configuration, both female parent 3119 alleles were transmited to the triploid hybrid, whereas only one of two female parent 3119 alleles was transmited to the triploid hybrid in the S type allelic configuration. GCPM_1577、GCPM_1120、GCPM_1153、GCPM_1390-1、GCPM_1175 were the SSR primers applied in this study with low recombination rate.
表 1 PCR扩增反应体系配置表
Table 1 Configuration of PCR reaction system
成分
Configuration体积
Volume/μL无菌ddH2O Sterile double distilled water 7.20 模板DNA DNA mould 2.00 5′端接有M13序列的上游引物Forward primer with an universal primer M13 tail at the 5′end 0.08 下游引物Reverse primer 0.32 荧光引物(ROX,FAM,TAMRA,HEX) Fluorescently labeled primer(ROX,FAM,TAMRA,HEX) 0.40 PCR Mix 10.00 总体系Total system 20.00 表 2 适合毛白杨2n配子诱导途径鉴定的低重组率多态性SSR位点信息
Table 2 Information of SSR loci with low recombination frequencies
标记名称
Marker所在染色体
Chromosome
No.重复单元
Repeat
motif引物序列(5′→3′)
Primer sequence
(5′→3′)检测等位基因
Detected allele/bp位点距着丝粒距离与
所在臂长之比
Ratio of distance from
centromere of loci to
chromosome arm length/%母本
Female
parent父本
Male
parentGC_1153 11 CTT 上游Forward TTCCTTTCACACAATGACAA 178/181 172/175 10.79 下游Reverse TTTAAAAACTGGGTCCGTAA GC_1175 14 CTT 上游Forward TCATCAACCTGACCTCTACC 191/210 194/197 10.80 下游Reverse CAAAGCAAAAACAAACACAA GC_1577 18 TA 上游Forward GAGAACATGTCAGCAGTTCA 238/242 234/240 16.44 下游Reverse GCTTAAACATTGAGAAAGCG GC_1120 10 TAA 上游Forward TGCAAATCCAAACACAGATA 237/261 228/231 25.41 下游Reverse ACGAATCATCTTACGCACTT GC_1390-1 13 CA 上游Forward CAAGAACGGTAAAATGCTTC 244/276 239/253 30.78 下游Reverse TCCATTTTCCAAATCCTAAA 表 3 大孢子染色体加倍来源的毛白杨三倍体SSR分子标记鉴定
Table 3 Genetic composition of the 87 Populus tomentosa triploids analyzed by 5 SSR markers with low hDNA frequencies
2n配子类型2n gamete type 基因配置类型Gene configuration 三倍体数Number of triploids 株数Total number FDR 5F0S 1 35 4F1S 9 3F2S 25 SDR 2F3S 24 52 1F4S 18 0F5S 10 表 4 高重组率多态性SSR位点具体信息
Table 4 Information of SSR loci with high recombination frequencies
标记名称
Marker所在染色体
Chromosome No.重复单元
Repeat motif引物序列(5′→3′)
Primer sequence
(5′→3′)检测等位基因
Detected allele/bp位点距着丝粒距离与
所在臂长之比
Ratio of distance from
centromere of loci to
chromosome arm length/%母本
Female
parent父本
Male
parentGCPM_2615 6 CTTT 上游Forward ATGTCAACGTCACTGACAAA 230/238 228/235 99.07 下游Reverse ATTAGGCAATGCAGAACACT GCPM_3310-1 8 GAG 上游Forward GCCTCATCATGCTTCTAAAC 222/228 231/237 86.41 下游Reverse CATGAACCTTCCACCATTAT GCPM_1418-1 16 CT 上游Forward GTACACTCAGCTGTGGTCCT 204/216 230/238 95.50 下游Reverse TGGGAGTCATGAAATCTACC ORPM_422 1 TAA 上游Forward TGCAAATCCAAACACAGATA 222/234 218/232 81.36 下游Reverse ACGAATCATCTTACGCACTT GCPM_719 15 AG 上游Forward AAAGTTATGCTTCAAGCCAG 211/239 207/227 80.57 下游Reverse AAGGGTTGCAACTTTTCATA 表 5 SDR型(1F5S)三倍体在高重组率SSR位点的等位基因组成
Table 5 Allelic configurations of SDR triploids at the SSR loci with high recombination frequencies
三倍体Triploid GCPM_2615 GCPM_3310 GCPM_1418-1 ORPM_422 GCPM_719 SDR-1 Ho He He Ho Ho SDR-2 He He He Ho He SDR-3 He He He He He SDR-4 He He He He He SDR-5 He He He He He SDR-6 He He He He He SDR-7 He Ho Ho He Ho SDR-8 Ho He He He He SDR-9 He He Ho He He SDR-10 He He Ho He He 注:He代表杂合型;Ho代表纯合型。Note: He, heterozygous; Ho, homozygous. -
[1] EINSPAHR D W, YCKOFF G W W. Aspen hybrid promise future source of Lake states fiber[J].Pulp and Paper, 1975, 49(12): 118-119.
[2] 朱之悌, 林惠斌, 康向阳.毛白杨异源三倍体B301等无性系选育的研究[J].林业科学, 1995, 31(6):499-505. http://www.cnki.com.cn/Article/CJFDTotal-LYKE506.003.htm ZHU Z T, LIN H B, KANG X Y.Studies on allotriploid breeding of Populus tomentosa B301 clones[J].Scientia Silvae Sinicae, 1995, 31(6): 499-505. http://www.cnki.com.cn/Article/CJFDTotal-LYKE506.003.htm
[3] 张守攻, 陈成彬, 韩素英, 等.中国部分杨属植物的染色体数目[J].植物分类学报, 2005, 43(6):539-544. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200506007 ZHANG S G, CHEN C B, HAN S Y, et al. Chromosome numbers of some Populus taxa from China[J]. Journal of Systematics and Evolution, 2005, 43(6):539-544. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200506007
[4] 陈成彬, 齐力旺, 张守攻, 等.三倍体杨树核型分析[J].武汉植物学研究, 2004, 22(6):565-567. doi: 10.3969/j.issn.2095-0837.2004.06.017 CHEN C B, QI L W, ZHANG S G, et al. The karyptype analysis of triploid poplar[J]. Journal of Wuhan Botanical Research, 2004, 22(6):565-567. doi: 10.3969/j.issn.2095-0837.2004.06.017
[5] 康向阳, 王君.杨树多倍体诱导技术研究[M].北京:科学出版社, 2010. KANG X Y, WANG J.Poplar polyploid induction technologyresearch[M].Beijing: Science Press, 2010.
[6] 黄东森, 朱湘渝, 王瑞玲, 等.中林46等12个杨树新品种杂交育种[C]//涂忠虞, 黄敏仁.阔叶树遗传改良.北京: 科学技术文献出版社, 1991: 1-19. HUANG D S, ZHU X Y, WANG R L, et al.Crossbreeding of 12 new poplar varieties including zhonglin 46[C]//TU Z Y, HUANG M R. Broad-leaved tree genetic improvement.Beijing: Science Technology Literature Press, 1991: 1-19.
[7] 康向阳.关于杨树多倍体育种的几点认识[J].北京林业大学学报, 2010, 32(5):149-153. http://j.bjfu.edu.cn/article/id/9474 KANG X Y. Some understandings on polyploid breeding of poplars[J].Journal of Beijing Forestry University, 2010, 32(5): 149-153. http://j.bjfu.edu.cn/article/id/9474
[8] WINTON L, EINSPAHR D.Tetraploid aspen production using unreduced triploid pollen[J]. Forest Science, 1970, 16(2): 180-182. https://www.researchgate.net/publication/45162918_Tetraploid_Aspen_production_using_unreduced_triploid_pollen
[9] HARDER M, VERHAGEN S, WINTON L, et al. Tetraploid aspen production using unreduced pollen from triploid males[J]. Forest Science, 1976, 22(3):329-330. https://www.researchgate.net/publication/44883608_Tetraploid_Aspen_production_using_unreduced_pollen_from_triploid_males
[10] MENDIBURU A O, PELOQUIN S J.The significance of 2n gametes in potato breeding[J]. Theoretical and Applied Genetics, 1977, 49(2):53-61. doi: 10.1007/BF00275164
[11] 张正海, 康向阳.植物2n配子发生及其遗传标记研究进展[J].遗传, 2006, 28(1):105-109. http://d.old.wanfangdata.com.cn/Periodical/yc200601019 ZHANG Z H, KANG X Y. Advances in researches on genetic markers of 2n gametes[J]. Hereditas (Beijing), 2006, 28(1):105-109. http://d.old.wanfangdata.com.cn/Periodical/yc200601019
[12] CARPUTO D, FRUSCIANTE L, PELOQUIN S J.The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums[J]. Genetics, 2003, 163(1):287-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001252910
[13] HERMSEN J G T.Mechanisms and genetic implications of 2n gamete formation[J].Iowa State Journal of Research, 1984, 58(4):421-434. https://www.researchgate.net/publication/40162285_Hermsen_JGTh_1984_b_Mechanisms_and_genetic_implications_of_2n_gamete_formation_Iowa_State_J_Res
[14] PELOQUIN S J, BOITEUX L S, SIMON P W, et al.A chromosome specific estimate of transmission of heterozygosity by 2n gametes in potato[J]. Journal of Heredity, 2008, 99(2):177-181. doi: 10.1093/jhered/esm110
[15] DONG C B, MAO J F, SUO Y J, et al.A strategy for characterization of persistent heteroduplex DNA in higher plants[J]. The Plant Journal, 2014, 80(2):282-291. doi: 10.1111/tpj.12631
[16] CICATELLI A, LUPI R, SALA F, et al.Genetic biodiversity and phylogenetic studies in poplar by means of the metallothionein multigene mamily[M]. New York: In Tech, 2012:113-114.
[17] PAKULL B, GROPPE K, MECUCCI F, et al.Genetic mapping of linkage group XIX and identification of sex-linked SSR markers in a Populus tremula×Populus tremuloides cross[J]. Canadian Journal of Forest Research, 2011, 41(2):245-253. doi: 10.1139/X10-206
[18] FERRANTE S P, LUCRETTI S, REALE S, et al. Assessment of the origin of new citrus tetraploid hybrids(2n=4x) by means of SSR markers and PCR based dosage effects[J].Euphytica, 2009, 173(2): 223-233.
[19] CHEN C L, YON M T, O'MALLEY D, et al. Origin and frequency of 2n gametes in Citrus sinensis×Poncirus trifoliata and their reciprocal crosses[J]. Plant Science, 2008, 174(1): 1-8. doi: 10.1016/j.plantsci.2007.08.005
[20] PAQUES F, HABER J E.Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae[J]. Microbiology & Molecular Biology Reviews Mmbr, 1999, 63(2):349-404. https://www.ncbi.nlm.nih.gov/pubmed/10357855
[21] MCMAHILL M S, SHAM C W, BISHOP D K.Synthesis-dependent strand annealing in meiosis[J].Plos Biology, 2007, 5(11):e299. doi: 10.1371/journal.pbio.0050299
[22] WATERWORTH W M, DRURY G E, BRAY C M, et al. Repairing breaks in the plant genome: the importance of keeping it together[J]. New Phytologist, 2011, 192(4):805-822. doi: 10.1111/j.1469-8137.2011.03926.x
[23] DONG C B, SUO Y J, KANG X Y.Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies[J]. Canadian Journal of Forest Research, 2014, 44(7):692-699. doi: 10.1139/cjfr-2013-0360
[24] SCHUELK E M.An economic method for the fluorescent labeling of PCR fragments[J].Nature Biotechnology, 2000, 18(2):233-234. doi: 10.1038/72708
[25] DONG C B, SUO Y J, WANG J, et al.Analysis of transmission of heterozygosity by 2n gametes in Populus (Salicaceae)[J].Tree Genetics & Genomes, 2015, 11(1):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2aea6d20db6378191899d84a3fafe7cc
[26] MENDIBURU A O, PELOQUIN S J. Bilateral sexual polyploidization in potatoes[J]. Euphytica, 1977, 26(3): 573-583. doi: 10.1007/BF00021683
[27] BARONE A, GEBHARDT C, FRUSCIANTE L. Heterozygosity in 2n gametes of potato evaluated by RFLP markers[J]. Throret Appl Genet, 1995, 91(1):98-104. doi: 10.1007/BF00220864
[28] VINING K J, POMRANING K R, WILHELM L J, et al. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression[J]. BMC Genomics, 2012, 13(1):1-19. doi: 10.1186/1471-2164-13-1
[29] XI X J, LI D, XU W, et al. 2n egg formation in Populus×euramericana (Dode) Guinier[J].Tree Genetics & Genomes, 2012, 8(6):1237-1245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=275a9d7517719b3a8b924b3a12047fb7
[30] 康向阳.毛白杨细胞遗传与三倍体选育的研究[D].北京: 北京林业大学, 1996. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y213968 KANG X Y.Study on cytogenetic and allotriploid breeding of Populus tomentosa[D].Beijing: Beijing Forestry University, 1996. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y213968
[31] 康向阳, 朱之悌, 林惠斌.杨树花粉染色体加倍有效处理时期的研究[J].林业科学, 1999, 35(4):21-24. doi: 10.3321/j.issn:1001-7488.1999.04.004 KANG X Y, ZHU Z T, LIN H B.Study on the effective treating period for pollen chromosome doubling of Populu tomentosa×P. bolleana[J]. Scientia Silvae Sinicae, 1999, 35(4):21-24. doi: 10.3321/j.issn:1001-7488.1999.04.004
[32] 康向阳, 朱之悌, 张志毅.银腺杨与毛新杨正反交三倍体选育[J].北京林业大学学报, 2000, 22(6): 8-11. doi: 10.3321/j.issn:1000-1522.2000.06.003 KANG X Y, ZHU Z T, ZHANG Z Y. Breeding of triploids by the reciprocal crossing of Populus alba×P.glandulosa and P.tomentosa×P.bolleana[J]. Journal of Beijing Forestry University, 2000, 22(6):8-11. doi: 10.3321/j.issn:1000-1522.2000.06.003
[33] 李艳华, 康向阳.诱导大孢子染色体加倍选育白杨杂种三倍体[J].北京林业大学学报, 2007, 29(5):22-25. doi: 10.3321/j.issn:1000-1522.2007.05.007 LI Y H, KANG X Y. Triploid induction in white poplar bychromosome doubling of megaspore[J].Journal of Beijing Forestry University, 2007, 29(5):22-25. doi: 10.3321/j.issn:1000-1522.2007.05.007
[34] 王君.青杨派树种多倍体诱导技术研究[D].北京: 北京林业大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1489837 WANG J.Techniques of polyploid induction in Populus spp. (Section Tacamahaca)[D].Beijing: Beijing Forestry University, 1996. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1489837
[35] LU M, ZHANG P D, KANG X Y. Induction of 2n female gametes in Populus adenopoda Maxim. by high temperature exposure during female gametophyte development[J]. Breeding Science, 2013, 63:96-103. doi: 10.1270/jsbbs.63.96
[36] 康宁, 白凤莹, 张平冬, 等.高温诱导胚囊染色体加倍获得毛白杨杂种三倍体[J].北京林业大学学报, 2015, 37(2) : 79-86. doi: 10.13332/j.cnki.jbfu.2015.02.021 KANG N, BAI F Y, ZHANG P D, et al. Inducing chromosome doubling of embryo sac in Populus tomentosa with high temperature exposure for hybrid triploids[J].Journal of Beijing Forestry University, 2015, 37(2):79-86. doi: 10.13332/j.cnki.jbfu.2015.02.021
-
期刊类型引用(7)
1. 张源源,吴桂海,龙青姨,黄肖,高新生,李维国. 橡胶树三倍体品种的2n雌配子形成途径再鉴定. 热带农业科学. 2025(01): 1-6 . 百度学术
2. 齐婉芯,陈婷婷,宋佳力,安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质. 北京林业大学学报. 2024(12): 92-102 . 本站查看
3. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 . 百度学术
4. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 . 百度学术
5. 李伟强,戴晓港,李小平,李淑娴. 美洲黑杨种质材料倍性鉴定. 南京林业大学学报(自然科学版). 2019(05): 51-58 . 百度学术
6. 王溢,邱彤,韩强,康向阳. 不同2n雌配子来源的青杨杂种三倍体与其亲本蛋白质组差异研究. 北京林业大学学报. 2018(05): 1-9 . 本站查看
7. 张源源,方家林,黄肖,李维国,安泽伟. 橡胶树三倍体的2n配子来源及发生途径鉴定. 南方农业学报. 2018(02): 208-213 . 百度学术
其他类型引用(7)