• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

低洼重度盐碱地滴灌垄作模式土壤水盐运移规律研究

董世德, 万书勤, 康跃虎, 孙甲霞

董世德, 万书勤, 康跃虎, 孙甲霞. 低洼重度盐碱地滴灌垄作模式土壤水盐运移规律研究[J]. 北京林业大学学报, 2018, 40(8): 82-89. DOI: 10.13332/j.1000-1522.20170272
引用本文: 董世德, 万书勤, 康跃虎, 孙甲霞. 低洼重度盐碱地滴灌垄作模式土壤水盐运移规律研究[J]. 北京林业大学学报, 2018, 40(8): 82-89. DOI: 10.13332/j.1000-1522.20170272
Dong Shide, Wan Shuqin, Kang Yuehu, Sun Jiaxia. Soil water and salt movement under drip irrigation of the ridge pattern in low-laying heavy saline alkali land[J]. Journal of Beijing Forestry University, 2018, 40(8): 82-89. DOI: 10.13332/j.1000-1522.20170272
Citation: Dong Shide, Wan Shuqin, Kang Yuehu, Sun Jiaxia. Soil water and salt movement under drip irrigation of the ridge pattern in low-laying heavy saline alkali land[J]. Journal of Beijing Forestry University, 2018, 40(8): 82-89. DOI: 10.13332/j.1000-1522.20170272

低洼重度盐碱地滴灌垄作模式土壤水盐运移规律研究

基金项目: 

,中国科学院前沿科学重点研究项目 QYZDJ-SSW-DQC028

“十三五”国家重点研发计划项目 2016YFC0501304

林业公益性行业科研专项 201504402

详细信息
    作者简介:

    董世德,博士生。主要研究方向:盐碱地水盐调控与节水灌溉。Email: dongsd.14s@igsnrr.ac.cn  地址:100101  北京市朝阳区大屯路甲11号中国科学院地理科学与资源研究所

    责任作者:

    万书勤,博士,副研究员。主要研究方向:农田水循环与节水灌溉。Email: wansq@igsnrr.ac.cn  地址:同上

  • 中图分类号: S157.2

Soil water and salt movement under drip irrigation of the ridge pattern in low-laying heavy saline alkali land

  • 摘要:
    目的“滴灌+高垄”模式下盐碱地垄沟栽种的苗木初始成活率高,而一段时间后成活率大幅降低,为研究清楚垄沟苗木死亡原因,开展了“滴灌+高垄”模式水盐运移规律研究。
    方法田间原土起垄后分别在垄面和垄沟铺设滴灌带,在保证滴头附近不出现大面积明水前提下持续滴灌,根据湿润锋运移和水盐运动情况连续取土样,分析垄体和垄沟盐分运移规律与灌水量之间的关系。
    结果当灌水量不超过41.4 mm时,水平湿润锋和垂直湿润锋运移距离均随灌水量的增加呈极显著的幂函数关系增加,垄体滴头下方形成一个高土壤含水量、低土壤盐分区,并且随着灌水量的增加,该区向横向和纵向不断扩大。当灌水量达到84.3 mm时,土壤质量含水率等值线由原来的椭圆形转变为倾斜向垄沟方向,垄面滴灌形成的湿润锋与垄沟滴灌形成的湿润锋搭接,土壤盐分在湿润锋搭接处聚集。当灌水量达100.9 mm时,垄体盐分随着灌水量的增加不断向土壤深层和垄沟迁移,盐分等值线图由双“U”型转变为倾斜向垄沟方向,垄体淋洗下来的盐分向垄沟大量聚集。当累计灌水量为171.6 mm时,垄体和垄坡大幅度脱盐,ECe较初始值降低62.9%。
    结论垄作滴灌灌溉对垄体和垄沟水盐运移有显著影响,垄沟盐分经历了先降低后增加再降低的过程,垄沟脱盐较垄体脱盐有延迟性。在此条件下对垄沟进行植被构建时,要避开盐分向垄沟聚集的时段,延迟于垄面种植。
    Abstract:
    ObjectiveUnder "drip irrigation+ridge" pattern in saline alkali land, the survival rate of plants was high at the beginning but reduced by a big margin latter when plants were planted in furrow. Aiming to have a clear understand of why plants died in furrow, water and salt movement experiment under "drip irrigation+ridge" pattern was conducted.
    MethodDrip tapes were arranged on both ridges and furrows after ridging in field and sustained drip irrigation was carried out under condition that there was not a large area of clear water around drip emitters. And the relationship between irrigation water amount and the water and salt movement of both ridge and furrow was analyzed by successively soil sampling, which were sampled upon wet front movement and the movement of water and salt.
    ResultWhen no more than 41.4 mm water was irrigated, the distances of both horizontal and vertical wet fronts increased in considerably power function relationship with the increase of irrigation water amount. A soil zone with high water content and low salinity was formed directly under drip emitter displaced on ridge. This soil zone enlarged both on horizontal and vertical directions with the increase of irrigation water. When 84.3 mm water was irrigated, the contours of water content in elliptical shape converted to the shape that almost parallel to ridge slope. The two wet fronts formed by drips on ridge and in furrow, respectively, connected at an area, where the salt accumulated here. When 100.9 mm water was used, the salt in ridge moved continuously to deeper soil layer and the furrow, resulting in the contours of salt changing from double "U" shape to the shape that almost parallel to ridge slope. The salt leached from ridge accumulated in furrow heavily in this period. When 171.6 mm water was irrigated, the ridge had a great salt decrease, and soil salt got a 62.9% loss compared with the initial value.
    ConclusionIrrigation under "drip irrigation + ridge" pattern had remarkable influence on water and salt movement on both ridges and furrows and the salt concentration in furrow reduced first, then increased later, and reduced again finally, revealing that desalination of furrows was delayed than that of ridges. To avoid the period of concentration of salt to furrows, vegetation constructions in furrows should be delayed than that on ridges.
  • 图  1   试验布置取样示意图

    Figure  1.   Schematic map of experimental sampling plots

    图  2   S2、S3、S4和S5取样时期垄体土壤水分分布

    Figure  2.   Distribution of soil water content in the ridge profile at S2, S3, S4 and S5 sampling stages

    图  3   水平湿润锋和垂直湿润锋运移距离与灌水量的关系

    **表示回归关系极显著(P < 0.01)。

    Figure  3.   Relationship between irrigation water amount and migration distance of the wetting front in both horizontal and vertical directions

    ** means the regression relationship is extremely significant (P < 0.01).

    图  4   S6和S8取样时期整个垄体垄沟剖面土壤水分分布

    Figure  4.   Distribution of soil water content in the whole ridge and ditch profile at S6 and S8 sampling stages

    图  5   S2、S3、S4和S5取样时期垄体ECe分布

    Figure  5.   Distribution of ECe in the ridge profile at S2, S3, S4 and S5 sampling stages

    图  6   S1、S6、S7和S8取样时期整个垄体垄沟剖面ECe分布

    Figure  6.   Distribution of ECe in the whole ridge and ditch profile at S1, S6, S7 and S8 sampling stages

    图  7   S6、S7和S8取样时期垄沟有无滴灌带整个垄体垄沟剖面ECe分布

    A、B、C有滴灌带;D、E、F无滴灌带。

    Figure  7.   Distribution of ECe in the whole ridge and furrow profile at S6, S7 and S8 sampling stages with or without drip tapes in the furrow

    A, B, C with drip tape in the furrow; D, E, F without drip tape in the furrow.

    图  8   S6、S7和S8取样时期垄沟有无滴灌带垄沟平均ECe柱状图

    不同小写字母表示差异显著(P < 0.05)。

    Figure  8.   Histogram of average ECe in the whole ditch profile at S6, S7 and S8 sampling stages with or without drip tapes in the ditch

    Different lowercase letters mean significant difference at P < 0.05 level.

    表  1   土壤基础理化性质

    Table  1   Basic physical and chemical properties of soil

    土壤深度
    Soil depth/cm
    土壤质地
    Soil texture
    ECe/(dS·m-1) pHe SARe/(mmol0.5·L-0.5)
    0~10 砂质壤土
    Sandy loam
    11.77 7.82 58.12
    10~20 砂质壤土
    Sandy loam
    12.18 7.88 46.79
    20~30 砂质壤土
    Sandy loam
    14.73 7.98 48.70
    30~40 砂质壤土
    Sandy loam
    15.98 8.03 46.53
    40~60 砂质壤土
    Sandy loam
    15.78 8.02 43.67
    60~80 砂质壤土
    Sandy loam
    19.66 7.83 52.83
    80~100 壤土
    Loam
    18.37 7.83 52.02
    100~120 砂质黏壤土
    Sandy clay loam
    14.30 8.02 56.40
    注:ECe表示饱和泥浆提取液电导率,SARe表示钠吸附比。Notes: ECe is the electric conductivity of extract of saturated paste and SARe is the sodium adsorption ratio of extract of saturated pasted.
    下载: 导出CSV
  • [1] 王遵亲, 祝寿全, 俞仁培, 等.中国盐渍土[M].北京:科学出版社, 1993.

    Wang Z Q, Zhu S Q, Yu R P, et al. Saline soil of China[M]. Beijing: Science Press, 1993.

    [2] 康跃虎, 万书勤, 蒋树芳.盐碱地农业与植被建设[J].高科技与产业化, 2012, 8(4):66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GKFC201204024.htm

    Kang Y H, Wan S Q, Jiang S F. Agriculture and vegetation construction in saline alkali soil[J]. High-Technology and Industrialization, 2012, 8(4):66-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GKFC201204024.htm

    [3]

    Wan S Q, Kang Y H, Wang D, et al. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum Mill) yield and water use in semi-humid area[J]. Agricultural Water Management, 2007, 90(1): 63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62b496a9cc4482685ebffa37347b2dd5

    [4]

    Wang R S, Kang Y H, Wan S Q, et al. Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area[J]. Agricultural Water Management, 2012, 110(7):109-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=865fcc4f07b4da896e0893d61abcf492

    [5]

    Li X B, Kang Y H, Wan S Q, et al. Reclamation of very heavy coastal saline soil using drip-irrigation with saline water on salt-sensitive plants[J]. Soil & Tillage Research, 2015, 146: 159-173. http://cn.bing.com/academic/profile?id=a6c897407a0eb6ae69d46900fdb2dbb6&encoded=0&v=paper_preview&mkt=zh-cn

    [6] 窦超银, 康跃虎, 万书勤.地下水浅埋区重度盐碱地覆膜咸水滴灌水盐动态试验研究[J].土壤学报, 2011, 48(3):524-532. http://d.old.wanfangdata.com.cn/Periodical/trxb201103009

    Dou C Y, Kang Y H, Wan S Q. Water and salt dynamics of saline-sodic soil with shallow water table under mulch-drip irrigation with saline water[J]. Acta Pedologica Sinica, 2011, 48(3):524-532. http://d.old.wanfangdata.com.cn/Periodical/trxb201103009

    [7] 董世德, 万书勤, 康跃虎, 等.低洼盐渍区滴灌不同土壤水基质势对土壤盐分及速生杨生长的影响[J].水土保持学报, 2017, 31(1):236-242, 247. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701039

    Dong S D, Wan S Q, Kang Y H, et al. Effect of different soil matric potentials on distribution of soil salt and growth of poplar (Populus) by drip irrigation in low-lying saline area[J]. Journal of Soil and Water Conservation, 2017, 31(1): 236-242, 247. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701039

    [8] 李小刚, 曹靖, 李凤民.盐化及钠质化对土壤物理性质的影响[J].土壤通报, 2004, 35(1):64-72. doi: 10.3321/j.issn:0564-3945.2004.01.016

    Li X G, Cao J, Li F M. Influence of salinity and sodicity on some physical properties of salt-affected soils[J]. Chinese Journal of Soil Science, 2004, 35(1):64-72. doi: 10.3321/j.issn:0564-3945.2004.01.016

    [9]

    Rhoades J D. Predicting bulk soil electrical conductivity versus saturation paste extract electrical conductivity calibrations from soil properties[J]. Soil Science Society of America Journal, 1981, 45(1):42-44. doi: 10.2136/sssaj1981.03615995004500010009x

    [10] 刘梅先, 杨劲松.土壤盐分的原位测定方法[J].土壤, 2011, 43(5):688-697. http://d.old.wanfangdata.com.cn/Periodical/tr201105002

    Liu M X, Yang J S. In-situ determination methods for soil salinity[J]. Soils, 2011, 43(5):688-697. http://d.old.wanfangdata.com.cn/Periodical/tr201105002

    [11] 李法虎.土壤物理化学[M].北京:化学工业出版社, 2006.

    Li F H. Soil physics[M]. Beijing: Chemical Industry Press, 2006.

    [12]

    Chhabr A R. Classification of salt-affected soils[J]. Arid Land Research and Management, 2004, 19(1):61-79. doi: 10.1080/15324980590887344

    [13]

    Robbins C W, Wiegand C L. Field and laboratory measurements[M]// Tanji K K. Manuals and reports on engineering practices. New York: Agricultural Salinity Assessment and Management (ASCE), 1990: 201-219.

    [14] 罗朋.盐碱土中不同灌水方式的水盐运移规律试验研究[D].杨凌: 西北农林科技大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10712-2008102730.htm

    Luo P. Study of water and salt movement in saline-alkali soil with different irrigation methods[D]. Yangling: Northwest A&F University, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10712-2008102730.htm

    [15] 刘春卿, 杨劲松, 陈小兵, 等.滴灌流量对土壤水盐运移及再分布的作用规律研究[J].土壤学报, 2007, 44(6):1016-1021. doi: 10.3321/j.issn:0564-3929.2007.06.008

    Liu C Q, Yang J S, Chen X B, et al. Movement and redistribution of water and salt in relation to emitter discharge rate[J]. Acta Pedologica Sinica, 2007, 44(6):1016-1021. doi: 10.3321/j.issn:0564-3929.2007.06.008

    [16]

    Li X B, Kang Y H, Wan S Q, et al. Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial[J]. Scientia Horticulturae, 2015, 186:163-171. doi: 10.1016/j.scienta.2015.02.024

    [17]

    Wan S Q, Jiao Y P, Kang Y H, et al. Drip irrigation of waxy corn (Zea mays L. var. ceratina, Kulesh) for production in highly saline conditions[J]. Agricultural Water Management, 2012, 104(8):210-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bcd766d95676fbc2583ef3bd0dcefe35

    [18] 王若水, 康跃虎, 万书勤, 等.盐碱地滴灌对新疆杨生长及土壤盐分分布影响[J].灌溉排水学报, 2012, 31(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/ggps201205001

    Wang R S, Kang Y H, Wan S Q, et al. Effect of soil matric potential on poplar growth and distribution of soil salt under drip irrigation in saline-sodic soil in arid regions[J]. Journal of Irrigation and Drainage, 2012, 31(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/ggps201205001

    [19]

    Kang Y H, Wang R S, Wan S Q, et al. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China[J]. Agricultural Water Management, 2012, 109:117-126. doi: 10.1016/j.agwat.2012.02.013

    [20]

    Chen X L, Kang Y H, Wan S Q, et al. Chinese rose (Rosa chinensis) cultivation in Bohai Bay, China, using an improved drip irrigation method to reclaim heavy coastal saline soils[J]. Agricultural Water Management, 2015, 158:99-111. doi: 10.1016/j.agwat.2015.04.017

    [21]

    Li X B, Wan S Q, Kang Y H, et al. Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents[J]. Agricultural Water Management, 2016, 163:180-189. doi: 10.1016/j.agwat.2015.09.020

  • 期刊类型引用(11)

    1. 杨勇,陈林,庞丹波,李学斌,刘瑞亮. 不同凋落物处理对贺兰山三种林分土壤呼吸的影响. 西南农业学报. 2023(03): 593-601 . 百度学术
    2. 陈炎根,胡艳静,黄莎,刘波,吴继来,王懿祥. 不同间伐强度对杉木人工林土壤呼吸速率的短期影响. 浙江农林大学学报. 2023(05): 1054-1062 . 百度学术
    3. 沈健,何宗明,董强,郜士垒,林宇,石焱. 不同处理方式下湿地松人工林土壤呼吸及温度敏感性变化. 西北林学院学报. 2023(05): 10-18 . 百度学术
    4. 刘洪柳,王泽鑫,郭晋平,张芸香. 林分密度对华北落叶松天然次生林林下植被和土壤呼吸的影响. 广西林业科学. 2022(02): 190-196 . 百度学术
    5. 李素新,覃志杰,刘泰瑞,郭晋平. 模拟氮沉降对华北落叶松人工林土壤微生物碳和微生物氮的动态影响. 水土保持学报. 2020(01): 268-274 . 百度学术
    6. 段北星,蔡体久,宋浩,肖瑞晗. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响. 生态学报. 2020(04): 1357-1366 . 百度学术
    7. 巫志龙,周成军,周新年,刘富万,朱奇雄,黄金湧,陈文. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异. 林业科学. 2019(06): 142-149 . 百度学术
    8. 段北星,满秀玲,宋浩,刘家霖. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征. 北京林业大学学报. 2018(02): 40-50 . 本站查看
    9. 李良,夏富才,孙越,张骁. 阔叶红松林下早春植物生物量分配. 北京林业大学学报. 2017(01): 34-42 . 本站查看
    10. 邵英男,田松岩,刘延坤,李云红,陈瑶,孙志虎. 密度调控对长白落叶松人工林土壤呼吸的影响. 北京林业大学学报. 2017(06): 51-59 . 本站查看
    11. 赵佳琪,牟长城,吴彬,周雪娇. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响. 北京林业大学学报. 2017(10): 13-23 . 本站查看

    其他类型引用(18)

图(8)  /  表(1)
计量
  • 文章访问数:  1897
  • HTML全文浏览量:  392
  • PDF下载量:  38
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-07-24
  • 修回日期:  2018-01-17
  • 发布日期:  2018-07-31

目录

    /

    返回文章
    返回