Snow hydrological characteristics of Larix gmelinii forest in northern Daxing'an Mountains of northeastern China
-
摘要:
目的研究大兴安岭北部地区兴安落叶松林雪水文特征,为今后积雪蒸发测定和区域水资源调控提供更为科学的数据支撑和理论基础。 方法对观测期内16场降雪的大气降雪量以及对林内积雪深度、积雪密度以及雪水当量进行了周期性观测与统计分析。 结果(1) 随着降雪级别的减少,兴安落叶松林的截留率呈现逐渐增加的趋势,分别为6.50%(暴雪)、9.04%(大雪)、9.8%(中雪)、15.7%(小雪)。可见,兴安落叶松林降雪截留最大截留率出现在小雪,暴雪时截留率则最小。(2)兴安落叶松林内积雪深度和林外相比差异不大,其中落叶松林林内积雪深度最深为68.6cm,林外空地积雪深度最深为74.8cm。(3)林内和林外的积雪密度在观测初期会随降雪的输入而降低,无降雪期有相应升高。融雪期随着气温的升高,雪密度减少速度会加快。在4月24—29日达到最大值,减少量分别为0.07和0.11g/cm3。(4)雪水当量速率减少量在4月24—29日达到最大值,分别为30.2和46.4mm。 结论和林外空地相比,兴安落叶松林对积雪深度、积雪密度及雪水当量影响不大,说明兴安落叶松林在雪水文过程中对积雪特征影响尽管存在,但并不明显。该区雪蒸发日变化呈单峰曲线变化规律,积雪期的日蒸发量和蒸发速率均值分别为0.04mm和0.2×10-3mm/h,日蒸发量波动幅度在0.02~0.14mm之间,在融雪期间,日蒸发量和蒸发速率的均值分别为0.38mm和1.51×10-3mm/h,采用灰色关联度对各因子进行分析,得出净辐射是影响兴安落叶松林内积雪蒸发的主要因素。 Abstract:ObjectiveTo provide more scientific data support and theoretical basis for the future snow cover evaporation measurement and regional water resurces requlation, the snow hydrological characteristics in the natural forest of Larix gmelinii was studied in northern Daxing'an Mountains of northeastern China. The snowfall interception and snow cover characteristics were systematically studied from the end of October 2015 to the beginning of May 2016. MethodDuring the observation period, the snowfall of 16 snowfalls, as well as the snow depth, snow density and snow water equivalent in the forest were periodically observed and statistically analyzed. Result(1) With the decreasing of snowfall level, the interception rate of Larix gmelinii forest showed a gradual increasing trend, which was 6.50% (blizzard), 9.04% (heavy snow), 9.8% (moderate snow), 15.7% (light snow). It can be seen that the maximum interception rate of snowfall in Larix gmelinii forest occurred in light snow, and the smallest occurred in blizzard. (2) The difference between the depth of snow inside Larix gmelinii forest and that outside the forest was not significant. Among them, the deepest snow depth in larch forest was 68.6cm, and that in outer space was 74.8cm. (3) The density of snow inside and outside the forest decreased with the input of snowfall in the early stage of observation, and did not increase in the absence of snowfall. Snowmelt as the temperature rises, the snow density will decrease faster. (4) Reaching the maximum between April 24 and April 29, with a decrease of 0.07 and 0.11g/cm3, respectively; the reduction of snow equivalent rate reached the maximum between April 24 and April 29, 30.2 and 46.4mm, respectively. ConclusionCompared with the open space outside the forest, the Larix gmelinii forest has little effect on the snow depth, snow cover density and snow water equivalent, indicating that the effect of Larix gmelinii forest on the hydrological characteristics of snow cover is not obvious. The daily change of snow evapotranspiration in this area showed a single-peak curve variation. The daily evaporation and evaporation rates in the snow-covered period were 0.04mm and 0.2×10-3mm/h, respectively. Daily evaporation fluctuated between 0.02-0.14mm. During the snowmelt period, the average daily evaporation and evaporation rates were 0.38mm and 1.51×10-3mm/h, respectively, and the factors were analyzed using the grey correlation degree. It is concluded that net radiation is the main factor influencing snowcover evaporation in Larix gmelinii forest. -
Key words:
- Larix gmelinii forest /
- snowcover evaporation /
- snowfall interception /
- snowmelting
-
表 1 兴安落叶松天然林林冠截留特征
Table 1. Canopy interception characteristics of Larix gmelinii forest
降雪级别
Snowfall level林外降雪量
Snowfall outsideforest/mm林内降雪量
Snowfall insideforest/mm林冠截留量
Canopy interception/mm林冠截留率
Canopy interception rate/%小雪Light snow 1.94 1.63 0.31 15.7 中雪Moderate snow 2.73 2.46 0.27 9.8 大雪Heavy snow 5.88 5.35 0.53 9.04 暴雪Blizzard 20.63 19.28 1.35 6.5 表 2 不同气象因子与积雪蒸发量的灰色关联度
Table 2. Grey correlation degree of different meteorological factors and snowcover evaporation
因子Factor 环境温度
Environment temperature/℃环境湿度
Environment humidity/%水汽压
Water vapor pressure/kPa风速
Wind speed/(m·s-1)净辐射
Net radiation/(MJ·m-2·d-1)积雪期蒸发量Snow period evaporation 0.831 1 0.741 2 0.541 1 0.544 6 0.896 5 融雪期蒸发量Snowmelting period evaporation 0.827 8 0.686 6 0.533 4 0.582 7 0.856 6 -
[1] 刘世荣, 常建国, 孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报, 2007, 31(5):753-756. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200705001Liu S R, Chang J G, Sun P S. Forest hydrology: forest and water in a context of global change[J]. Journal of Plant Ecology, 2007, 31 (5):753-756. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200705001 [2] 盛后财, 蔡体久, 琚存勇.小兴安岭白桦林降水转化过程元素特征分析[J].北京林业大学学报, 2015, 37(2):59-66. doi: 10.13332/j.cnki.jbfu.2015.02.009Sheng H C, Cai T J, Ju C Y. Element characteristics in the precipitation conversion process in Betula platyphlla forest of Xiaoxing'an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37 (2):59-66. doi: 10.13332/j.cnki.jbfu.2015.02.009 [3] 王增艳, 车涛. 2002—2009年中国干旱区积雪时空分布特征[J].干旱区研究, 2012, 29(3): 464-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj201203014Wang Z Y, Che T. Spatiotemporal distribution of snow cover in arid regions in China[J]. Arid Zone Research, 2012, 29(3): 464-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj201203014 [4] Wei X, Liu S, Zhou G, et al. Hydrological processes in major types of Chinese forest[J]. Hydrological Processes, 2005, 19(1):63-75. http://cn.bing.com/academic/profile?id=ccec2017c9ca1ef970d1dedffceb46a4&encoded=0&v=paper_preview&mkt=zh-cn [5] Dozlier J. Snow, snowmelt, rain, runoff, and chemistry in a Sierra Nevada Watershed[Z]. Final Report to California Air Resources Board, 1989: 16-26. [6] Martinet J. Rango A. Paramenter values for snowmelt runoff modeling[J]. Journa1 of Hydrology, 1986, 84(3-4):197-219. http://cn.bing.com/academic/profile?id=6a99879c59f02f9b9a5b642dcab50102&encoded=0&v=paper_preview&mkt=zh-cn [7] Sokratov S A. Parameters influencing the recrystallization rate of snow[J]. Cold Regions Science and Technology, 2001, 33(2-3): 263-274. doi: 10.1016/S0165-232X(01)00053-2 [8] Pomeroy J W, Brun E. Physical properties of snow[M]//Jones H G, Pomeroy J W, Walker D A, et al. Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge: Cambridge University Press, 2001: 45-126. [9] 白重媛, 大畑哲夫.天山乌鲁木齐河源1号冰川夏季消融期内反射率的变化[J].冰川冻土, 1989, 11(4): 311-324. http://www.cnki.com.cn/Article/CJFDTotal-BCDT198904002.htmBai Z Y, Ohata T. Variations of albedo on the glacier No.1 at the head water of Urumqi River, Tianshan Moutains, during the summer ablation period[J]. Journal of Glaciology and Geocryology, 1989, 11(4): 311-324. http://www.cnki.com.cn/Article/CJFDTotal-BCDT198904002.htm [10] 谢应钦, 张金生.雪层内太阳的穿透辐射[J].冰川冻土, 1988, 10(2): 135-142. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198802004.htmXie Y Q, Zhang J S. Solar penetration radiation in snow layers[J]. Journal of Glaciology and Geocryology, 1988, 10(2):135-142. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198802004.htm [11] Kormos P R, Marks D, McNamara J P, et al. Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone[J]. Journal of Hydrology, 2014, 519:190-204. doi: 10.1016/j.jhydrol.2014.06.051 [12] Schelker J, Kuglerová L, Eklöf K, et al. Hydrological effects of clear-cutting in a boreal forest-snowpack dynamics, snowmelt and streamflow responses[J]. Journal of Hydrology, 2013, 484: 105-114. doi: 10.1016/j.jhydrol.2013.01.015 [13] Michael A, Rawlins, Kyle C, et al. Remote sensing of snow thaw at the pan-Arctic scale using the seawinds scatterometer[J]. Journal of Hydrology, 2005, 312(1-4):294-311. doi: 10.1016/j.jhydrol.2004.12.018 [14] Bernier P Y. Microwave remote sensing of snowpack properties: potential and limitations[J]. Nordic Hydrology, 1987, 18(1): 1-20. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bac5a3a177fc5f9ac0af5e29a5f820e4 [15] 王雪芹, 张元明, 蒋进, 等.古尔班通古特沙漠南部沙垄水分动态:兼论积雪融化和冻土变化对沙丘水分分异作用[J].冰川冻土, 2006, 28(2):262-268. doi: 10.3969/j.issn.1000-0240.2006.02.017Wang X Q, Zhang Y M, Jiang J, et al. Variation pattern of soil water content in longitudinal dune in the southern part of Gurbantêggêt Desert: how snowmelt and frozen soil change affect the soil moisture[J]. Journal of Glaciology & Geocryology, 2006, 28(2):262-268. doi: 10.3969/j.issn.1000-0240.2006.02.017 [16] 王贺, 蔡体久, 满秀玲, 等.小兴安岭不同类型人工林林内积雪特征[J].水土保持学报, 2012, 26(6):263-267, 273. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206052Wang H, Cai T J, Man X L, et al. Characteristics of snowpack in different planted forests of Xiaoxing'anling[J]. Journal of Soil and Water Conservation, 2012, 26(6):263-267, 273. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206052 [17] 李奕, 蔡体久, 盛后财, 等.大兴安岭地区天然樟子松林降雪截留及积雪特征[J].水土保持学报, 2014, 28(5):124-128. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201405022Li Y, Cai T J, Sheng H C, et al. Characteristics of the snow interception and the snowpack in Scotch pine forest in Great Xing'an Mountains[J]. Journal of Soil and Water Conservation, 2014, 28(5):124-128. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201405022 [18] 俞正祥, 蔡体久, 朱宾宾.大兴安岭北部主要森林类型林内积雪特征[J].北京林业大学学报, 2015, 37(12):100-107. doi: 10.13332/j.1000-1522.20150175Yu Z X, Cai T J, Zhu B B. Characteristics of snowpack in major forest types of northern Daxing' anling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(12):100-107. doi: 10.13332/j.1000-1522.20150175 [19] Zhang J, Ashjian C, Campbell R, et al. The influence of sea ice and snow cover and nutrient availiability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 118:122-135. doi: 10.1016/j.dsr2.2015.02.008 [20] Golding D L, Swanson R H. Snow distribution patterns in clearings and adjacent forest[J]. Water Resources Research, 1986, 22(13): 1931-1940. doi: 10.1029/WR022i013p01931 [21] Martinee J. Expected snow loads on structure from incomplete hydrological data[J]. Journal of Glaciology, 1977, 19(81):185-195. doi: 10.1017/S0022143000029270 [22] Wever N, Schmid L, Heilig A, et al. Verification of the multi-layer SNOWPACK model with different water transport schemes[J]. The Cryosphere, 2015, 9(6): 2271-2293. doi: 10.5194/tc-9-2271-2015 [23] 杨俊华, 秦翔, 吴锦奎, 等.祁连山老虎沟流域春季积雪属性的分布及变化特征[J].冰川冻土, 2012, 34(5):1092-1093. http://d.old.wanfangdata.com.cn/Periodical/bcdt201205010Yang J H, Qin X, Wu J K, et al. Distribution and variation of spring snow cover in Laohugou Watershed of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2012, 34(5):1092-1093. http://d.old.wanfangdata.com.cn/Periodical/bcdt201205010 [24] 高培, 魏文寿, 刘明哲.中国西天山季节性积雪热力特征分析[J].高原气象, 2012, 31(4): 1075-1078. http://d.old.wanfangdata.com.cn/Periodical/gyqx201204022Gao P, Wei W S, Liu M Z. Characteristic analysis on temperature change in snow layer in Western Tianshan Mountain in China[J]. Plateau Meteorology, 2012, 31(4): 1075-1078. http://d.old.wanfangdata.com.cn/Periodical/gyqx201204022 [25] 陆恒, 魏文寿, 刘明哲, 等.季节性森林积雪融雪期雪层含水率垂直廓线与时间变化特征[J].地理研究, 2011, 30(7):1245-1248. http://d.old.wanfangdata.com.cn/Periodical/dlyj201107010Lu H, Wei W S, Liu M Z, et al. A study on the vertical profile of forest snow liquid water content and variation with time in the snowmelt period[J]. Geographical Research, 2011, 30(7):1245-1248. http://d.old.wanfangdata.com.cn/Periodical/dlyj201107010 [26] 刘家霖, 满秀玲.降雨和非降雨日兴安落叶松天然林蒸腾及蒸散发特征[J].生态学报, 2017, 37(15):5059-5069. http://d.old.wanfangdata.com.cn/Periodical/stxb201715014Liu J L, Man X L.Characteristics of transpiration and evapo-transpiration from natural Larix gmelinii forests on rainy and non-rainy days[J]. Acta Ecologica Sinica, 2017, 37(15):5059-5069. http://d.old.wanfangdata.com.cn/Periodical/stxb201715014 [27] 刘海亮, 蔡体久, 满秀玲, 等.小兴安岭主要森林类型对降雪、积雪和融雪过程的影响[J].北京林业大学学报, 2012, 34(2): 20-25. http://j.bjfu.edu.cn/article/id/9722Liu H L, Cai T J, Man X L, et al. Effects of major forest types of Xiaoxing'an Mountains on the process of snowfall, snow cover and snow melting[J]. Journal of Beijing Forestry University, 2012, 34(2):20-25. http://j.bjfu.edu.cn/article/id/9722 [28] 李辉东, 关德新, 吴家兵, 等.长白山阔叶红松林冬季雪面蒸发特征[J].应用生态学报, 2013, 24(4):1039-1046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201304022Li H D, Guan D X, Wu J B, et al. Characteristics of evaporation over broadleaved Korean pine forest in Changbai Mountains, Northeast China during snow cover period in winter[J]. Chinese Journal of Applied Ecology, 2013, 24(4):1039-1046. http://d.old.wanfangdata.com.cn/Periodical/yystxb201304022 [29] Mcjannet D, Vertessy R. Effects of thinning on wood production, leaf area index, transpiration and canopy Interception of a plantation subject to drought[J]. Tree Physiology, 2011, 21 (12/13): 1001-1008. http://cn.bing.com/academic/profile?id=de705ad9c3839e0d39309fb425d6fb00&encoded=0&v=paper_preview&mkt=zh-cn [30] Bulcock H H, Jewitt G P W. Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological application with a particular focus on canopy interception[J]. Hydrology and Earth System Science, 2010, 14(2): 383-392. doi: 10.5194/hess-14-383-2010 [31] Rutter N, Essery R, Pomeroy J, et al. Evaluation of forest snow processes models (SnowMIP2)[J/OL]. Journal of Geophysical Research: Atmospheres, 2009, 114[2017-08-11]. http://onlinelibrary.wiley.com/doi/10.1029/2008JD011063/full. [32] Varhola A, Coops N C, Weiler M, et al. Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results[J]. Journal of Hydrology, 2010, 392(3): 219-233. http://cn.bing.com/academic/profile?id=e815be270bf9fff351eb43f73e52a547&encoded=0&v=paper_preview&mkt=zh-cn [33] Boon S. Snow ablation energy balance in a dead forest stand[J]. Hydrological Processes, 2009, 23(18): 2600-2610. doi: 10.1002/hyp.v23:18 [34] Coughlan J C, Running S W. Regional ecosystem simulation: a general model for simulating snow accumulation and melt in mountainous terrain[J]. Landscape Ecology, 1997, 12(3):119-136. doi: 10.1023/A:1007933813251 [35] Lee Y H, Mahrt L. An evaluation of snowmelt and sublimation over short vegetation in land surface modeling[J]. Hydrological Processes, 2004, 18: 3543-3557. doi: 10.1002/hyp.5799 [36] Suzuki K, Nakai Y. Canopy snow influence on water and energy balances in a coniferous forest plantation in northern Japan[J]. Journal of Hydrology, 2008, 352(1): 126-138. http://cn.bing.com/academic/profile?id=483a6d8db5f9163138b01bbf53530c1b&encoded=0&v=paper_preview&mkt=zh-cn [37] Lundberg A, Calder I, Harding R. Evaporation of intercepted snow: measurement and modeling[J]. Journal of Hydrology, 1998, 206(3-4): 151-163. doi: 10.1016/S0022-1694(97)00016-4 -